Graphene–silver hybrid metamateria for tunable narrow-band perfect absorption and reflection at visible waveband

2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Hongyong Huang
Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


2019 ◽  
Vol 9 (7) ◽  
pp. 1410 ◽  
Author(s):  
Tao Chen ◽  
Runyu Zhao ◽  
Ben-Xin Wang

This paper presents a simple metamaterial design to achieve the triple-band near-perfect absorption response that can be used in the area of sensor application. The introduced absorber consists of an array of Au strip and a bulk flat Au film separated by an insulator dielectric layer. Three narrow-band resonance absorption peaks are obtained by superposing three different modes (a fundamental mode resonance and two high-order responses) of the Au strip. These resonance modes (in particular of the last two modes) have large sensitivity to the changes of the surrounding index, overlayer thickness and the refractive index of the overlayer.


2016 ◽  
Vol 18 (12) ◽  
pp. 125101 ◽  
Author(s):  
Xinguang Hu ◽  
Shuai Yuan ◽  
Ammar Armghan ◽  
Yang Liu ◽  
Cheng Zeng ◽  
...  

2020 ◽  
Vol 49 (5) ◽  
pp. 20190489
Author(s):  
岳嵩 Song Yue ◽  
王然 Ran Wang ◽  
侯茂菁 Maojing Hou ◽  
黄刚 Gang Huang ◽  
张紫辰 Zichen Zhang

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3447
Author(s):  
Guang Lu ◽  
Kaiyuan Zhang ◽  
Yunpeng Zhao ◽  
Lei Zhang ◽  
Ziqian Shang ◽  
...  

In this study, we theoretically and experimentally investigated the perfect optical absorptance of a photonic heterostructure composed of a truncated all-dielectric photonic crystal (PC) and a thick metal film in the visible regions. The three simulated structures could achieve narrow-band perfect optical absorption at wavelengths of 500 nm, 600 nm, and 700 nm, respectively. Based on the measured experimental results, the three experimental structures achieved over 90% absorption at wavelengths of 489 nm, 604 nm, and 675 nm, respectively. The experimental results agreed well with the theoretical values. According to electromagnetic field intensity distributions at the absorption wavelengths, the physical mechanism of perfect absorption was derived from the optical Tamm state (OTS). The structure was simple, and the absorption characteristics were not significantly affected by the thickness of the thick metal layer, which creates convenience in the preparation of the structure. In general, the proposed perfect absorbers have exciting prospects in solar energy, optical sensor technology, and other related fields.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5140
Author(s):  
Farhan Ali ◽  
Serap Aksu

We theoretically investigate a multi-resonant plasmonic metamaterial perfect absorber operating between 600 and 950 nm wavelengths. The presented device generates 100% absorption at two resonance wavelengths and delivers an ultra-narrow band (sub-20 nm) and high quality factor (Q=44) resonance. The studied perfect absorber is a metal–insulator–metal configuration where a thin MgF2 spacer is sandwiched between an optically thick gold layer and uniformly patterned gold circular nanodisc antennas. The localized and propagating nature of the plasmonic resonances are characterized and confirmed theoretically. The origin of the perfect absorption is investigated using the impedance matching and critical coupling phenomenon. We calculate the effective impedance of the perfect absorber and confirm the matching with the free space impedance. We also investigate the scattering properties of the top antenna layer and confirm the minimized reflection at resonance wavelengths by calculating the absorption and scattering cross sections. The excitation of plasmonic resonances boost the near-field intensity by three orders of magnitude which enhances the interaction between the metamaterial surface and the incident energy. The refractive index sensitivity of the perfect absorber could go as high as S=500 nm/RIU. The presented optical characteristics make the proposed narrow-band multi-resonant perfect absorber a favorable platform for biosensing and contrast agent based bioimaging.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


1966 ◽  
Vol 24 ◽  
pp. 170-180
Author(s):  
D. L. Crawford

Early in the 1950's Strömgren (1, 2, 3, 4, 5) introduced medium to narrow-band interference filter photometry at the McDonald Observatory. He used six interference filters to obtain two parameters of astrophysical interest. These parameters he calledlandc, for line and continuum hydrogen absorption. The first measured empirically the absorption line strength of Hβby means of a filter of half width 35Å centered on Hβand compared to the mean of two filters situated in the continuum near Hβ. The second index measured empirically the Balmer discontinuity by means of a filter situated below the Balmer discontinuity and two above it. He showed that these two indices could accurately predict the spectral type and luminosity of both B stars and A and F stars. He later derived (6) an indexmfrom the same filters. This index was a measure of the relative line blanketing near 4100Å compared to two filters above 4500Å. These three indices confirmed earlier work by many people, including Lindblad and Becker. References to this earlier work and to the systems discussed today can be found in Strömgren's article inBasic Astronomical Data(7).


1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


1968 ◽  
Vol 11 (4) ◽  
pp. 811-816 ◽  
Author(s):  
Maurice I. Mendel

Thirty infants, ranging in age from 4 to 11 months, were tested with five different recorded sounds that varied in bandwidth and temporal configuration: a continuous band of white noise, the same band of noise interrupted twice per second, the crinkling of onionskin paper, a narrow band of noise centered at 3000 Hz, and a warbled 3000 Hz tone. With loudness and duration of the stimuli held constant, more responses occurred to sounds composed of a broadband spectrum than to those of a limited bandwidth. Temporal configuration of the sound had no effect on the number of responses elicited.


Sign in / Sign up

Export Citation Format

Share Document