Optical interference filters with continuous refractive index modulations by microwave plasma-assisted chemical vapor deposition

1993 ◽  
Vol 32 (5) ◽  
pp. 1018 ◽  
Author(s):  
Adrian C. Greenham
1989 ◽  
Vol 50 (C5) ◽  
pp. C5-177-C5-188 ◽  
Author(s):  
L. VANDENBULCKE ◽  
P. BOU ◽  
R. HERBIN ◽  
V. CHOLET ◽  
C. BENY

2008 ◽  
Vol 47 (4) ◽  
pp. 3050-3052
Author(s):  
Masataka Moriya ◽  
Yuji Matsumoto ◽  
Yoshinao Mizugaki ◽  
Tadayuki Kobayashi ◽  
Kouichi Usami

2016 ◽  
Vol 15 (4) ◽  
pp. 614-618 ◽  
Author(s):  
Hideyuki Watanabe ◽  
Hitoshi Umezawa ◽  
Toyofumi Ishikawa ◽  
Kazuki Kaneko ◽  
Shinichi Shikata ◽  
...  

2017 ◽  
Vol 409 ◽  
pp. 261-269 ◽  
Author(s):  
Ai-Min Wu ◽  
Chen-Chen Feng ◽  
Hao Huang ◽  
Ramon Alberto Paredes Camacho ◽  
Song Gao ◽  
...  

2000 ◽  
Vol 9 (7) ◽  
pp. 545-549
Author(s):  
Zhang Yong-ping ◽  
Gu You-song ◽  
Chang Xiang-rong ◽  
Tian Zhong-zhuo ◽  
Shi Dong-xia ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 4412-4417
Author(s):  
Jonggeon Lee ◽  
Taemyung Kwak ◽  
Geunho Yoo ◽  
Seongwoo Kim ◽  
Okhyun Nam

In this study, we demonstrated the defect-selective etching and epitaxy technique for defect reduction of a heteroepitaxial chemical vapor deposition (CVD) diamond substrate. First, an 8 nm layer of nickel was deposited on the diamond surface using an e-beam evaporator. Then, defect-selective etching was conducted through an in situ single process using microwave plasma chemical vapor deposition (MPCVD). After defect-selective etching, the diamond layer was overgrown by MPCVD. The defect density measured from the atomic force microscope image decreased from 3.27×108 to 2.02×108 cm−2. The first-order Raman peak of diamond shifted from 1340 to 1336 cm−1, and the full width at half maximum (FWHM) decreased from 9.66 to 7.66 cm−1. Through the defect-selective etching and epitaxy technique, it was confirmed that the compressive stress was reduced and the crystal quality improved.


Sign in / Sign up

Export Citation Format

Share Document