On-line access to remote sensing data with the satellite-data information system (ISIS)

1994 ◽  
Author(s):  
G. Strunz ◽  
H.-J. Lotz-Iwen
Author(s):  
Rupali Dhal ◽  
D. P. Satapathy

The dynamic aspects of the reservoir which are water spread, suspended sediment distribution and concentration requires regular and periodical mapping and monitoring. Sedimentation in a reservoir affects the capacity of the reservoir by affecting both life and dead storages. The life of a reservoir depends on the rate of siltation. The various aspects and behavior of the reservoir sedimentation, like the process of sedimentation in the reservoir, sources of sediments, measures to check the sediment and limitations of space technology have been discussed in this report. Multi satellite remote sensing data provide information on elevation contours in the form of water spread area. Any reduction in reservoir water spread area at a specified elevation corresponding to the date of satellite data is an indication of sediment deposition. Thus the quality of sediment load that is settled down over a period of time can be determined by evaluating the change in the aerial spread of the reservoir at various elevations. Salandi reservoir project work was completed in 1982 and the same is taken as the year of first impounding. The original gross and live storages capacities were 565 MCM& 556.50 MCM respectively. In SRS CWC (2009), they found that live storage capacity of the Salandi reservoir is 518.61 MCM witnessing a loss of 37.89 MCM (i.e. 6.81%) in a period of 27 years.The data obtained through satellite enables us to study the aspects on various scales and at different stages. This report comprises of the use of satellite to obtain data for the years 2009-2013 through remote sensing in the sedimentation study of Salandi reservoir. After analysis of the satellite data in the present study(2017), it is found that live capacity of the reservoir of the Salandi reservoir in 2017 is 524.19MCM witnessing a loss of 32.31 MCM (i.e. 5.80%)in a period of 35 years. This accounts for live capacity loss of 0.16 % per annum since 1982. The trap efficiencies of this reservoir evaluated by using Brown’s, Brune’s and Gill’s methods are 94.03%, 98.01and 99.94% respectively. Thus, the average trap efficiency of the Salandi Reservoir is obtained as 97.32%.


2019 ◽  
Vol 943 (1) ◽  
pp. 110-118
Author(s):  
A.A. Kadochnikov

Today, remote sensing data are an important source of operational information about the environment for thematic GIS, this data can be used for the development of water, forestry and agriculture management, in the ecology and nature management, with territorial planning, etc. To solve the problem of ensuring the effective use of the space activities’results in the Krasnoyarsk Territory a United Regional Remote Sensing Center was created. On the basis of the Center, a new satellite receiving complex of FRC KSC SB RAS was put into operation. It is currently receiving satellite data from TERRA, AQUA, Suomi NPP and FENG-YUN satellites. Within the framework in cooperation with the Siberian Regional Center for Remote Sensing the Earth, an archive of satellite data from domestic Resource-P and Meteor-M2 satellites was created. The work considers some features of softwaredevelopment and technological support tools for loading, processing and publishing remote sensing data. The product is created in the service-oriented paradigm based on geoportal technologies and interactive web-cartography. The focus in this article is paid to the peculiarities of implementing the software components of the web GIS, the efficient processing and presentation of geospatial data.


Author(s):  
N. Aparna ◽  
A. V. Ramani ◽  
R. Nagaraja

Remote Sensing along with Geographical Information System (GIS) has been proven as a very important tools for the monitoring of the Earth resources and the detection of its temporal variations. A variety of operational National applications in the fields of Crop yield estimation , flood monitoring, forest fire detection, landslide and land cover variations were shown in the last 25 years using the Remote Sensing data. The technology has proven very useful for risk management like by mapping of flood inundated areas identifying of escape routes and for identifying the locations of temporary housing or a-posteriori evaluation of damaged areas etc. The demand and need for Remote Sensing satellite data for such applications has increased tremendously. This can be attributed to the technology adaptation and also the happening of disasters due to the global climate changes or the urbanization. However, the real-time utilization of remote sensing data for emergency situations is still a difficult task because of the lack of a dedicated system (constellation) of satellites providing a day-to-day revisit of any area on the globe. The need of the day is to provide satellite data with the shortest delay. Tasking the satellite to product dissemination to the user is to be done in few hours. Indian Remote Sensing satellites with a range of resolutions from 1 km to 1 m has been supporting disasters both National & International. In this paper, an attempt has been made to describe the expected performance and limitations of the Indian Remote Sensing Satellites available for risk management applications, as well as an analysis of future systems Cartosat-2D, 2E ,Resourcesat-2R &RISAT-1A. This paper also attempts to describe the criteria of satellite selection for programming for the purpose of risk management with a special emphasis on planning RISAT-1(SAR sensor).


2020 ◽  
pp. 155-179
Author(s):  
Oleg Karsaev ◽  
Igor Shuklin ◽  
Sergey Yushchenko

An approach to the dynamic formation (adjustment) of schedules for distributed photogrammetric image processing in a network of ground centers included in the United geographically distributed information system for receiving and processing Earth remote sensing data from space is considered. Having the fullest satisfaction of requirements of consumers to the satellite images of necessary areas, the approach provides the formation of self-organizing B2B enterprises in the specified network providing information, software and hardware resources of the ground-based facilities of various departmental and other accessories for photogrammetric processing of any received images of the area from the the United geographically distributed information system. It is shown, that a search in B2B enterprise nodes and borrowing the required resources will allow ground centers to flexibly scale physical and virtual means of photogrammetric processing of Earth remote sensing data, quickly form their local structural and functional organizations depending on the current properties of the consumer requests flow for receiving Earth remote sensing data in the United geographically distributed information system, characteristics of the flow of terrain survey materials from orbital monitoring tools, and also take into account the visual and measuring properties of images of the area subject to photogrammetric processing. A method for truncating the set of potential performers of the application in accordance with the existing semantic and other restrictions on the composition of the desired set of performers is proposed. Also mechanisms to encourage ground centers to provide idle resources to B2B enterprise nodes are proposed. They are based on the possibility of receiving monetary or other remuneration from a ground center for participating in distributed application servicing. The development of a well-known model of a self-organizing B2B enterprise creates conditions for a more efficient organization of servicing the flow of applications in the United geographically distributed information system by attracting unused software, information and hardware resources of ground centers of various departmental affiliations.


2015 ◽  
Vol 733 ◽  
pp. 124-129
Author(s):  
Hui Zhi Wu ◽  
Qi Gang Jiang ◽  
Chao Jun Bai

This work uses multiple types of remote sensing data to develop a model-based mineral exploration method. Data used include Worldview-2 satellite data as the main information source supplemented by QuickBird satellite data to assist in geological interpretations and ASTER satellite data to extract remote sensing anomalies. We have enhanced the spectral and spatial resolution of the remote sensing data using ENVI software. Human-computer interaction methods have been used to confirm the geological conditions. We have interpreted 24 distinct lithologic units, including various types of metamorphic and sedimentary rocks. A total of 471 remote sensing anomalies were delineated, consisting of 173 hydroxyl anomalies and 298 iron-staining anomalies. Geological background screening methods were applied to identify 98 remote sensing anomalies, of which 29 were recommended for further study. Based on the interpretation of anomalies extracted from the ASTER and other geological remote sensing data sets, we have established a typical-deposit prospecting model. In the model, we delineated remote sensing prospecting targets by considering: remote sensing anomalies, geologic bodies and structures, geophysical anomalies and geochemical anomalies. Using this model, we divided the work area into two zones based on types of mineral generation. Seven prospecting targets (one A class, three B class and three C class) were identified. Trenching and block sorting methods were conducted for field verification, and resulted in the discovery of two copper and two iron occurrences with commercial potential.


2013 ◽  
Vol 423-426 ◽  
pp. 2737-2741
Author(s):  
Dan Yang Cao ◽  
Kang Ning Xu ◽  
Zhi Yan Wang ◽  
Ji Wu Ma

With the development and advancement of technology, remote sensing data of MODIS satellite become more precise, loved and applied by relevant researchers widely. This software enables remote sensing data of EOS/MODIS satellite's automated ordering and address of FTP resource's accessing, providing convenience for users. Currently, the software with stable and reliable performance, is robust, fully automated, and can provide services to all kinds of users of remote sensing data of MODIS satellite.


Sign in / Sign up

Export Citation Format

Share Document