Evaluation on the detection limit of blood hemoglobin using photolepthysmography based on path-length optimization

2016 ◽  
Author(s):  
Di Sun ◽  
Chao Guo ◽  
Ziyang Zhang ◽  
Tongshuai Han ◽  
Jin Liu
2003 ◽  
Author(s):  
Thomas N. Anderson ◽  
Rodolfo Barron-Jimenez ◽  
Jerald A. Caton ◽  
Robert P. Lucht ◽  
Sukesh Roy ◽  
...  

All-solid-state continuous-wave (cw) laser systems for ultraviolet (UV) absorption measurements of the nitric oxide (NO) molecule and mid-infrared (IR) absorption measurements of carbon monoxide (CO) were developed and demonstrated. For the NO sensor, 250 nW of tunable cw UV radiation at 226.8 nm is produced by sum-frequency-mixing in a beta-barium borate crystal. For the CO sensor, 2μW of tunable cw IR radiation at 4.5 μm is produced by difference-frequency mixing in a periodically-poled lithium niobate crystal. A tunable external-cavity diode laser (ECDL) provides one of the fundamental beams for both processes so that the wavelength of the generated UV/IR can be tuned over NO/CO absorption lines to produce a fully resolved absorption spectrum. The sensors were used for measurements in the exhaust stream of an operating auxiliary power unit (APU) gas turbine engine and a well-stirred reactor (WSR). During these tests, NO was measured in the exhaust at levels below 10 ppm. For measurements at levels above 20 ppm, the NO emission levels obtained using the new sensor agreed with the results of probe sampling chemiluminescent analyzer results to within 10%. A detection limit of 0.8 ppm of per meter path length at 1000 K is estimated for the NO sensor. Measurements with the CO sensor demonstrated an agreement with extractive probe sampling to within 15%. The estimated detection limit of the CO sensor is a few ppm per meter path length at 1000 K.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Biomeditsina ◽  
2020 ◽  
pp. 39-46
Author(s):  
A. S. Samoilov ◽  
Yu. D. Udalov ◽  
M. V. Sheyanov ◽  
A. V. Gholinsky ◽  
A. B. Litvinenko

This communication presents the experience of using mobile pressure chambers in patients with the confi rmed novel coronavirus infection in hospital settings. The obtained preliminary results indicate positive antihypoxic effects of hyperbaric oxygen therapy (HBO) applied in the form of increased saturation. After a session of HBO, patients demonstrated an increase in the oxygen saturation of capillary blood hemoglobin at the average level of 3.71 points. Differences between SatO2 levels prior to and following HBO treatment were signifi cant in the CT2, CT3 and CT4 groups (p0.05). As expected, the effi cacy of HBO in terms of the oxygen saturation of capillary blood hemoglobin was the greatest in the patient groups showing pronounced clinical and radiological changes in the lungs.


2000 ◽  
Vol 627 ◽  
Author(s):  
Gabriel Popescu ◽  
Aristide Dogariu

ABSTRACTIn many industrial applications involving granular media, knowledge about the structural transformations suffered during the industrial process is desirable. Optical techniques are noninvasive, fast, and versatile tools for monitoring such transformations. We have recently introduced optical path-length spectroscopy as a new technique for random media investigation. The principle of the method is to use a partially coherent source in a Michelson interferometer, where the fields from a reference mirror and the sample are combined to obtain an interference signal. When the system under investigation is a multiple-scattering medium, by tuning the optical length of the reference arm, the optical path-length probability density of light backscattered from the sample is obtained. This distribution carries information about the structural details of the medium. In the present paper, we apply the technique of optical path-length spectroscopy to investigate inhomogeneous distributions of particulate dielectrics such as ceramics and powders. The experiments are performed on suspensions of systems with different solid loads, as well as on powders and suspensions of particles with different sizes. We show that the methodology is highly sensitive to changes in volume concentration and particle size and, therefore, it can be successfully used for real-time monitoring. In addition, the technique is fiber optic-based and has all the advantages associated with the inherent versatility.


2013 ◽  
Vol 12 (7) ◽  
pp. 460-465
Author(s):  
Sameer Amereih ◽  
Zaher Barghouthi ◽  
Lamees Majjiad

A sensitive colorimetric determination of fluoride in drinking water has been developed using a polymeric zirconium complex of 5-(2-Carboxyphenylazo)-8-Hydroxyquinoline as fluoride reagents. The method allowed a reliable determination of fluoride in range of (0.0-1.5) mg L-1. The molar absorptivity of the complex formation is 7695 ± 27 L mol-1 cm-1 at 460 nm. The sensitivity, detection limit, quantitation limit, and percentage recovery for 1.0 mg L-1 fluoride for the proposed method were found to be 0.353 ± 0.013 μg mL-1, 0.1 mg L-1, 0.3 mg L-1, and 101.7 ± 4.1, respectively.


Author(s):  
J. J. Domanski ◽  
P. L. Haire ◽  
T.J. Sheets

AbstractAverage residue Ievels of DDT + TDE in flue-cured tobacco decreased from 6.1 ppm in 1970 to 0.85 ppm in 1972. DDT + TDE residues in Burley also dropped sharply from previous levels. In 1972 one sample from Kentucky contained 8.17 ppm; all other Burley samples were less than 0.25 ppm. DDT + TDE residues also declined in fire-cured and air-cured types; of these samples Tennessee dark air-cured tobacco contained the highest average residue (3.5 ppm of DDT + TDE). In 1972 over 90 % of the flue-cured samples were positive for toxaphene. Since each of our samples was a composite of tobacco from 10 farmers, we cannot conclude from this result that 90 % of the individual piles contained toxaphene. Significant amounts of toxaphene were found in other types also; for example, 50 % of the 1972 Burley samples had toxaphene concentrations greater than 0.5 ppm. Average endosulfan levels decreased between 1970 and 1972 in flue-cured and Burley tobaccos. However, in all of the dark air and dark fire-cured samples from Tennessee endosulfan residues exceeded 5 ppm. Average endrin residues were at or near the low detection limit in alI samples except fire-cured and dark air-cured tobacco from Tennessee; these averaged 0.26 and 0.17 ppm, respectively.


Sign in / Sign up

Export Citation Format

Share Document