average residue
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Federico Maggi ◽  
Fiona Tang ◽  
Daniele la Cecilia

<p>The need for comprehensive assessments of agrochemicals use and its potential risk of environmental contamination are imperative, but studies currently exist only at regional and watershed scales. By coupling the recently developed PEST-CHEMGRIDS data product to the BRTSim (BioReactive Transport Simulator) computational framework, we conducted the first mechanistic assessment of the environmental hazard of glyphosate (GLP) use at global scales. PEST-CHEMGRIDS provides the annual application rate of 95 active ingredients, including GLP, on various dominant and aggregated crops (Maggi et al., 2019), and is used to feed the biogeochemical reaction network of GLP biogeochemistry embedded in BRTSim (la Cecilia et al., 2018). Deployment of BRTSim over a georeferenced global-scale grid allowed us to assess four key quantities that determine the level of environmental hazard, namely: (i) soil residue, (ii) biodegradation recalcitrance, (iii) leaching rate below the root zone, and (iv) persistence in the root zone. Our assessment (Maggi et al., 2020) shows that the total average residue in the root zone and leaching below root zone is important only in minor areas globally, but also show that biodegradation recalcitrance and persistence can lead to an environmental hazard in vast agricultural areas worldwide. The latter were largely related to the GLP transformation product, aminomethylphosphonic acid (AMPA), because of slow reaction kinetics, further inhibited by the presence of aqueous inorganic phosphate. With the four key quantities, we have mapped the aggregated hazard geographically to identify hotspots where GLP contamination may have to be assessed with greater level of detail. High hazard hotspots cover less than 1% of the agriculture area (inclusive of pastures) and are identified in north Europe, USA, Brazil, and China.</p><p>Maggi F., Tang F.H.M., la Cecilia D., McBratney A., (2019), Scientific Data 6(1), 1-20.</p><p>la Cecilia D., Tang F.H.M., Coleman N., Conoley C., Veervort R.W., and Maggi F., (2018), Water Research, 146, 37-54.</p><p>Maggi F., la Cecilia D., Tang F.H., & McBratney A., (2020). Science of the Total Environment, 717, 137167.</p>


Author(s):  
Hiroya Harino ◽  
Shigeyuki Yamato

Abstract Tributyltin (TBT) and triphenyltin (TPT) concentrations in water samples from Tanabe Bay were found to range from 4–28 ng l−1 and 3–7 ng l−1, respectively. In fishing ports, the concentrations of TBT in surface water were similar to those in bottom water. However, in aquafarming areas with poor flushing, the concentrations of TBT in bottom water were higher than those in surface water. This suggested that the TBT in water samples is re-eluted from sediment. No difference in the concentration of TPT was observed between the surface and bottom waters. The concentrations of TBT and TPT in sediment samples ranged from 3–23 μg kg−1 dry weight and 2–37 μg kg−1 dry weight. TBT and TPT concentrations ranged from 3.1–100 μg kg−1 and 3.1–7.2 μg kg−1 in oysters and gastropods, and from 1.1–4.9 μg kg−1 and <0.2–3.9 μg kg−1 in fish, respectively. Organotin concentrations in biota were lower than the tolerable average residue levels (TARLs). Alternative biocides – i.e. diuron, chlorothalonil, dichlofluanid, irgarol 1051 and Sea-Nine 211 – were also detected in surface water, and chlorothalonil and irgarol 1051 were detected in sediment. The concentrations of these compounds in surface water and sediment were lower than those reported previously. Dichlofluanid, chlorotharonil and irgarol 1051 were also found at low levels in oysters and gastropods, and at ranges of 325–339 μg kg−1, 268–291 μg kg−1 and 43–49 μg kg−1, respectively, in fish; the concentrations in fish were close to the TARL levels.


2020 ◽  
Vol 118 (2) ◽  
pp. e2017525118
Author(s):  
Jonas Pfab ◽  
Nhut Minh Phan ◽  
Dong Si

Information about macromolecular structure of protein complexes and related cellular and molecular mechanisms can assist the search for vaccines and drug development processes. To obtain such structural information, we present DeepTracer, a fully automated deep learning-based method for fast de novo multichain protein complex structure determination from high-resolution cryoelectron microscopy (cryo-EM) maps. We applied DeepTracer on a previously published set of 476 raw experimental cryo-EM maps and compared the results with a current state of the art method. The residue coverage increased by over 30% using DeepTracer, and the rmsd value improved from 1.29 Å to 1.18 Å. Additionally, we applied DeepTracer on a set of 62 coronavirus-related cryo-EM maps, among them 10 with no deposited structure available in EMDataResource. We observed an average residue match of 84% with the deposited structures and an average rmsd of 0.93 Å. Additional tests with related methods further exemplify DeepTracer’s competitive accuracy and efficiency of structure modeling. DeepTracer allows for exceptionally fast computations, making it possible to trace around 60,000 residues in 350 chains within only 2 h. The web service is globally accessible at https://deeptracer.uw.edu.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5492
Author(s):  
Eva Magovac ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

Chemically bleached cotton fabric was treated with phytic acid (PA), chitosan (CH) and urea by means of layer-by-layer (LbL) deposition to impart flame retardant (FR) behavior using only benign and renewable molecules. Samples were treated with 8, 10, 12 and 15 bilayers (BL) of anionic PA and cationic CH, with urea mixed into the aqueous CH solution. Flammability was evaluated by measuring limiting oxygen index (LOI) and through vertical flame testing. LOI values are comparable to those obtained with commercial flame-retardant finishes, and applying 10 or more bilayers renders cotton self-extinguishing and able to pass the vertical flame test. Microscale combustion calorimeter (MCC) measurements show the average reduction of peak heat release rate (pHRR) of all treated fabrics of ~61% and the reduction of total heat release (THR) of ~74%, in comparison to untreated cotton. Decomposition temperatures peaks (T1max) measured by thermogravimetric analyzer (TG) decreased by approximately 62 °C, while an average residue at 650 °C is ~21% for 10 and more bilayers. Images of post-burn char indicate that PA/CH-urea treatment is intumescent. The ability to deposit such a safe and effective FR treatment, with relatively few layers, makes LbL an alternative to current commercial treatments.


2020 ◽  
Author(s):  
Jonas Pfab ◽  
Nhut Minh Phan ◽  
Dong Si

AbstractInformation about macromolecular structure of protein complexes such as SARS-CoV-2, and related cellular and molecular mechanisms can assist the search for vaccines and drug development processes. To obtain such structural information, we present DeepTracer, a fully automatic deep learning-based method for fast de novo multi-chain protein complex structure determination from high-resolution cryo-electron microscopy (cryo-EM) density maps. We applied DeepTracer on a previously published set of 476 raw experimental density maps and compared the results with a current state of the art method. The residue coverage increased by over 30% using DeepTracer and the RMSD value improved from 1.29Å to 1.18Å. Additionally, we applied DeepTracer on a set of 62 coronavirus-related density maps, among them 10 with no deposited structure available in EMDataResource. We observed an average residue match of 84% with the deposited structures and an average RMSD of 0.93Å. Additional tests with related methods further exemplify DeepTracer’s competitive accuracy and efficiency of structure modeling. DeepTracer allows for exceptionally fast computations, making it possible to trace around 60,000 residues in 350 chains within only two hours. The web service is globally accessible at https://deeptracer.uw.edu.


2015 ◽  
Vol 29 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Catherine P. D. Borger ◽  
Glen P. Riethmuller ◽  
Michael Ashworth ◽  
David Minkey ◽  
Abul Hashem

PRE herbicides are generally less effective in conservation farming systems because of high levels of crop residue. However, performance can be improved if the herbicides are applied with a high carrier volume. This research investigated the interaction of carrier volume and row spacing or height of crop residue on the control of rigid ryegrass with trifluralin, at Cunderdin and Wongan Hills Western Australia. To create plots with varying residue row spacing in 2011, wheat was seeded in 2010 using a narrow row spacing (25 or 22 cm at Cunderdin and Wongan Hills), wide spacing (50 or 44 cm), or not planted to wheat. Narrow or wide row spacing or no crop plots had an average residue biomass of 4480, 3560, and 2430 kg ha−1at Cunderdin and 1690, 1910, and 1030 kg ha−1at Wongan Hills. To vary residue height, the wheat was harvested to produce tall, medium, or short crop residue (22, 13, and 5 cm at Cunderdin and 27, 22, and 17 cm at Wongan Hills). Rigid ryegrass seeds were broadcast onto each site in 2011 and trifluralin was sprayed using 50, 75, or 100 L ha−1carrier volume (directly prior to seeding). Increased carrier volume increased spray coverage at both sites (average cover of 9, 15, and 26% at 50, 75, and 100 L ha−1), leading to improved control of rigid ryegrass (68, 75, and 82% control at Cunderdin and 23, 41, and 68% control at Wongan Hills). Reduced crop residue height or increased row spacing led to reduced rigid ryegrass density at Cunderdin but had no impact at Wongan Hills. Therefore, carrier volume has a more consistent impact on the performance of trifluralin than crop residue row spacing or height.


2011 ◽  
Vol 281 ◽  
pp. 280-285
Author(s):  
Li Song Hu ◽  
Guang Hui He ◽  
Xi Wen Liu ◽  
Yan Wang

In this paper, 34 soil samples was collected in Beihu Lake area in Wuhan, Hubei province for determination of 16 types of polycyclic aromatic hydrocarbons (PAHs), in order to study the residues of persistent organic pollutants in soil of Beihu area, GC-MS, as well as a detection method called EPA8080A, was used to detect these PAHs, including Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene and Benzo(g,hi)perylene. The result showed that PAHs could be found in all the samples, and the average residue of PAHs was 4114.2 ng/g. The coefficient of variation was 0.98, which indicated a greater dispersion. The pollution was more serious in the specified district than other domestic and foreign area. The ratio of specific PAHs demonstrated that they mainly came from combustion process and then fall to the surface by means of atmospheric deposition, thus, the departments concerned should strengthen or improve the use of fuel.


2004 ◽  
Vol 87 (6) ◽  
pp. 1368-1379 ◽  
Author(s):  
Árpád Ambrus ◽  
Eugenia Soboleva

Abstract The uneven distribution of pesticide residues among the treated objects leads to an inevitable variability of pesticide residue levels measured in the samples, which may significantly contribute to the combined uncertainty of the analytical results. A total of 8844 unit-crop residue data derived from 57 lots and 19 field trials were evaluated to determine the characteristic features of residue distribution in unit crops and composite samples. The average residue levels and the corresponding coefficient of variation (CV) values obtained for individual units taken from a given lot showed wide variation from lot to lot. There was no significant difference between the CVs of residue levels in sample sets of various unit crops or composite sample populations of different sizes taken from various crops. The CV values for levels of residues taken from individual lots followed normal distribution. Very good correlation was found between the CVs of the parent and sample populations. The experimentally obtained values were very close to those expected on the basis of the central limit theorem. The estimated typical relative standard uncertainties of sampling medium-size crops for pesticide residue analysis in the cases of sample sizes of 5, 10, and 25 were 37, 25, and 16%, respectively.


Author(s):  
Peter I. Nabelek ◽  
Cindy D. Bartlett

In order to elucidate how mineralogy and composition of crustal sources influences production of leucogranite magmas, we modelled the potential fertility of a sequence of metapelites and metagraywackes from the Black Hills, South Dakota, U.S.A., using a least-squares mixing approach. Rocks analogous to the Black Hills schists were the sources of the Harney Peak leucogranite. Both muscovite and biotite fluid-absent melting reactions (MM and BM, respectively) were investigated. Using the Harney Peak Granite composition as the melt analogue and mineral compositions from the schists for mixing calculations, it is shown that MM of metapelites would lead to highly variable residue mineralogy in the investigated samples. The average residue includes 36 wt.% biotite, 32 wt.% quartz, 12 wt.% plagioclase, 8 wt.% K-feldspar, 9 wt.% sillimanite and 2 wt.% garnet. Melt production ranges from 5% to 23% with an average of 14%. It is limited by the amount of H2O that must be in the melt at the conditions of melting, relative to the amount that is in muscovite in the source rocks. Plagioclase-rich metagraywackes contain little to no muscovite, thus MM cannot occur in them.Although BM is continuous over a wide temperature range, for the purposes of modelling melting at 975°C and 10kbar was chosen. The temperature is near the terminal stability of biotite, thus the calculations give near-maximum melt production. At this temperature, the mineralogy of the model residues from both metapelites and metagraywackes is dominated by garnet. The potential melt production in the metapelites ranges from 0% to 58% with an average of 32%. It is limited by the availability of plagioclase in the source rocks. Potential melt production in the metagraywackes ranges from 9% to 37% with an average of 23%. At the chosen conditions of melting, melt production is limited by the available K in biotite, although at lower temperatures, the available H2O limits melt production. The total potential melt production (MM + BM) in the metapelites is higher because they have on average a low normative An/Ab ratio (0·14) that approaches the ratio in the leucogranites (0·04). The paragonite component in muscovite significantly contributes to the low ratio in the metapelites. The higher ration (0·27) in the metagraywackes is denned by the feldspar composition.Using the calculated melt fractions and residue mineralogies, we modelled the concentrations of Rb, Sr and Ba in the melts, as these elements are important indicators of melt-generating processes. The results indicate that both Sr and Ba are likely to be heterogeneous in extracted melt batches and will be depleted in partial melts relative to their pelitic sources, irrespective of whether the melting is fluid-absent or fluid-present.


2000 ◽  
Vol 83 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Stanisław Sadło

Abstract The association between application rate of a pesticide and its residue in ripe tomatoes was studied. The average residue level (R) of any pesticide in ripe tomatoes remained in quantitative relation to its dose (D), expressed by the following regression equation: R = 0.24 D (mg/kg), where the numerical factor, 0.24, represents the average residue in mg/kg after application of 1 kg active ingredient per hectare with relative standard deviation of 23%. Quantitative association between these 2 factors enables evaluation of greenhouse tomato growers with respect to their observation of Good Agricultural Practice rules and the Plant Protection Act, obligatory in Poland since 1996, and thus may be a reliable basis for the registration of new agrochemicals.


Sign in / Sign up

Export Citation Format

Share Document