Improvements in the imaging performance of a high volume manufacturing EUV scanner with a special emphasis on the added value of the new illuminator for increased pupil flexibility

Author(s):  
Bartosz Bilski ◽  
Erik Wang ◽  
Friso Wittebrood ◽  
John MᶜNamara ◽  
Dorothe Oorschot ◽  
...  
2008 ◽  
Author(s):  
Mark van de Kerkhof ◽  
Eelco van Setten ◽  
Andre Engelen ◽  
Vincent Plachecki ◽  
Hua-yu Liu ◽  
...  

2009 ◽  
Vol 25 (S1) ◽  
pp. 74-81 ◽  
Author(s):  
Claudia Wild

Objectives: The aim of this article is to describe and analyze the stages toward recognition and implementation of health technology assessment (HTA).Methods: System analysis of structures and institutions and their use of HTA.Results: Austria is a latecomer in implementing evaluations/HTA as decision support. It can to a certain degree absorb the increasing international knowledge. Austria had a long time to observe the successes and failures of HTA in other countries and to learn from other countries. The implementation of HTA within the Austrian healthcare system ran through stages of uptake: starting 1989 with a systematic review on international activities, first international networking and collaboration since 1991, proposed assessments until the late 1990s, followed by reactive assessments on demand mostly on high volume and costly technologies since then. Since 2000, HTA is used on a regular basis for investment and reimbursement decisions by several players, namely the Ministry of Health, the Social Insurance and hospital cooperations. In 2006, the Austrian HTA-institute was founded.Conclusions: It took approximately 15 years from first research activities in HTA to an institutionalization. HTA in Austria is not only product- but also process-oriented: The actual production of assessments for decision support is as important as the structuring and accompanying of the process of decisions making. In addition, shaping the public understanding of science (characterized by the intrinsic belief that all new medical interventions provide added value to the healthcare system) is part of Austrian HTA.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000235-000238
Author(s):  
Jérôme Azémar

Embedded packages are nowadays not anymore just an interesting approach for some specific application. Benefiting from 3D TSV high cost, and consequently delays, these packages could fit the high expectations of the industry. Indeed, added value of embedded packages in terms of integration, reliability and even cost at system level is already clear for manufacturers. Embedded packages lacked success until 2013–2014 because of long time of qualification, few players involved and customer convincing time. The situation changed with new product announcements and strong involvement of some key players. In this presentation we will focus on two main types of embedded packages, those that are most of interest at the moment: Fan-Out and Embedded Dies packages. The principle of Fan Out technology is to embed products in a molded compound and allow redistribution layers pitch to be independent from die size. This approach is already mature enough to have high volume products claimed by Nanium and Stats ChipPAC using eWLB type of Fan-Out. Market for Fan-Out packages in 2014 almost reached $200M and a 20% growth for the coming years is expected. Understanding the potential of that market and the high demand from telecom industry for a thin and cheap package, other important OSATs like SPIL or J-Devices are willing to enter the market with their own technologies. TSMC is also proposing its inFO process to its customers, confirming that foundries could look at the OSATs reserved market through wafer-level packages. Each player has its own view on how to gain market share and meet the challenges such as cost reduction, panel manufacturing, yield improvement, die shift… The principle of Embedded die packages has the same purpose of promoting high integration due to placing chips within the substrate but with a different approach: Embedding is done in laminate substrates. This process is pushed by PCB manufacturers such as AT&S and could create a new supply chain with new players. One of the main advantages is to use a mature and cheap manufacturing chain created for PCB manufacturing and then having low cost for a technology that would allow a good integration and access to both sides of the chips easily. On the other hand, Embedded Die technologies are still waiting for a high volume project that shall be coming once higher yield, better resolution and clarification of the supply chain will be achieved. In this presentation we will describe what the strategies to reach that goal are. Both technologies seem to be competing but are actually complementary and often targeting different markets. Key customers already qualified them and will open the gates for the fast growing packaging market. The presentation will provide an overview of the products announcements, commercialization roadmaps as well as market forecasts per application. Insights and trends into the different fan-out and embedded die packaging approaches by applications, business models and major players will be reviewed.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bartosz Marcinkowski ◽  
Bartlomiej Gawin

Purpose One of the leading factors that shape product and service delivery are data collected in databases and other repositories maintained by companies. The transformation of such data into knowledge and wisdom may constitute a new source of income. This paper aims to explore how small/medium-sized enterprises (SMEs) advance their business models (BMs) around data to handle data-driven products and how this contributes to their innovativeness and performance. Design/methodology/approach To investigate the phenomenon, the as-is BM of a multinational SME was mapped and its limitations were revealed through a qualitative study. The BM canvas was used. Then the data-driven approach was innovated within the facility management (FM) industry, where a high volume of operational and sensor-based data being collected creates added value in terms of new data-based products. Findings A data-driven business model (DDBM) blueprint for the FM industry that supports the need to complement service-driven operations with the data-driven approach is delivered. Enhanced BM equips a facility manager with additional managerial tools that enable decreasing property utilization costs and opens up new opportunities for generating revenue. This paper drafts the way to evolve from service to data-driven business and point out the attitudes that managers should adopt to promote and implement DDBM. Practical implications The DDBM constitutes a guideline that supports FM organizations in focusing their activities and resources on generating business value from data and monetizing data-driven products. Originality/value The research expands knowledge regarding BMs and their evolution. The gap regarding the DDBM innovation within the FM industry is filled.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000182-000216 ◽  
Author(s):  
Jerome AZEMAR ◽  
Rozalia BEICA ◽  
Thibault BUISSON ◽  
Andrej IVANCOVIC ◽  
Amandine PIZZAGALLI

Embedded packages are nowadays not anymore just an interesting approach for some specific application. Benefiting from 3D TSV high cost, and consequently delays, these packages could fit the high expectations of the industry. Indeed, added value of embedded packages in terms of integration, reliability and even cost at system level is already clear for manufacturers. Embedded packages lacked success until 2013–2014 because of long time of qualification, few players involved and customer convincing time. The situation changed with new product announcements and strong involvement of some key players. In this presentation we will focus on two main types of embedded packages, those that are most of interest at the moment: Fan-Out and Embedded Dies packages. The principle of Fan Out technology is to embed products in a molded compound and allow redistribution layers pitch to be independent from die size. This approach is already mature enough to have high volume products claimed by Nanium and Stats ChipPAC using eWLB type of Fan-Out. Market for Fan-Out packages in 2014 almost reached $200M and a 20% growth for the coming years is expected. Understanding the potential of that market and the high demand from telecom industry for a thin and cheap package, other important OSATs like SPIL or J-Devices are willing to enter the market with their own technologies. TSMC is also proposing its inFO process to its customers, confirming that foundries could look at the OSATs reserved market through wafer-level packages. Each player has its own view on how to gain market share and meet the challenges such as cost reduction, panel manufacturing, yield improvement, die shift… The principle of Embedded dies package has the same purpose of promoting high integration due to placing chips within the substrate but with a different approach: Embedding is done in laminate substrates. This process is pushed by PCB manufacturers such as AT&S and could create a new supply chain with new players. One of the main advantages is to use a mature and cheap manufacturing chain created for PCB manufacturing and then having low cost for a technology that would allow a good integration and access to both sides of the chips easily. On the other hand, Embedded Die technologies are still waiting for a high volume project that shall be coming once higher yield, better resolution and clarification of the supply chain will be achieved. In this presentation we will describe what the strategies to reach that goal are. Both technologies seem to be competing but are actually complementary and often targeting different markets. Key customers already qualified them and will open the gates for the fast growing packaging market. The presentation will provide an overview of the products announcements, commercialization roadmaps as well as market forecasts per application. Insights and trends into the different fan-out and embedded die packaging approaches by applications, business models and major players will be reviewed.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000176-000179 ◽  
Author(s):  
Jérôme Azémar

Abstract The semiconductor industry is facing a new era in which device scaling and cost reduction will not continue on the path they followed for the past few decades, with Moore's law in its foundation. Advanced nodes do not bring the desired cost benefit anymore and R&D investments in new lithography solutions and devices below 10nm nodes are rising substantially. In order to answer market demands, the industry seeks further performance and functionality boosts in integration. While scaling options remain uncertain in the shorter term and continue to be investigated, the spotlight turns to advanced packages. Emerging packages such as fan-out wafer level packages and 2.5D/3D IC solutions together with more conventional but upgraded flip chip BGAs aim to bridge the gap and revive the cost/performance curve while at the same time adding more functionality through integration. Embedded packages are nowadays not anymore just an interesting approach for specific applications. Benefiting from 3D TSV high cost, these packages could fit the high expectations of the industry. Indeed, added value of embedded packages in terms of integration, reliability and even cost at system level is already clear for manufacturers. Embedded packages lacked success until 2013–2014 because of long time of qualification, few players involved and customer convincing time. The situation changed with new product announcements and strong involvement of some key players, lately most notably TSMC. In this work we will focus on one main type of embedded package of most interest at the moment: Fan-Out wafer level package. The principle of Fan-Out technology is to embed products in a mold compound and allow redistribution layer pitch to be independent from die size. This approach is already mature enough to have high volume products claimed by Nanium and JCET/Stats ChipPAC using eWLB type of Fan-Out, with many other developments from OSATs and an aggressive technology from TSMC (inFO). The market for Fan-Out packages in 2015 almost reached $500M, with potential breakthrough events in store in 2016 that could triple the 2015 market and continue further with more than 30% growth. Understanding the potential of that market and the high demand from telecom industry for a thin and cheap package, other important OSATs like Powertech or Amkor are willing to enter the market with their own technologies. TSMC is also proposing its inFO process to its customers, confirming that foundries could look at the OSATs reserved market through wafer-level packages. Each player has its own view on how to gain market share and meet the challenges such as cost reduction, panel manufacturing, yield improvement, die shift… The presentation will provide an overview of the products announcements, commercialization roadmaps as well as market forecasts per application. Insights and trends into the different fan-out packaging approaches by applications, business models and major players will be reviewed.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


Sign in / Sign up

Export Citation Format

Share Document