Manufacturing directed self assembly flows enabled by advanced materials (Conference Presentation)

Author(s):  
Mary Ann J. Hockey
Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


2018 ◽  
Vol 115 (14) ◽  
pp. 3575-3580 ◽  
Author(s):  
L. Li ◽  
A. J. Fijneman ◽  
J. A. Kaandorp ◽  
J. Aizenberg ◽  
W. L. Noorduin

Controlling nucleation and growth is crucial in biological and artificial mineralization and self-assembly processes. The nucleation barrier is determined by the chemistry of the interfaces at which crystallization occurs and local supersaturation. Although chemically tailored substrates and lattice mismatches are routinely used to modify energy landscape at the substrate/nucleus interface and thereby steer heterogeneous nucleation, strategies to combine this with control over local supersaturations have remained virtually unexplored. Here we demonstrate simultaneous control over both parameters to direct the positioning and growth direction of mineralizing compounds on preselected polymorphic substrates. We exploit the polymorphic nature of calcium carbonate (CaCO3) to locally manipulate the carbonate concentration and lattice mismatch between the nucleus and substrate, such that barium carbonate (BaCO3) and strontium carbonate (SrCO3) nucleate only on specific CaCO3 polymorphs. Based on this approach we position different materials and shapes on predetermined CaCO3 polymorphs in sequential steps, and guide the growth direction using locally created supersaturations. These results shed light on nature’s remarkable mineralization capabilities and outline fabrication strategies for advanced materials, such as ceramics, photonic structures, and semiconductors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zan Hua ◽  
Joseph R. Jones ◽  
Marjolaine Thomas ◽  
Maria C. Arno ◽  
Anton Souslov ◽  
...  

AbstractUnderstanding and controlling self-assembly processes at multiple length scales is vital if we are to design and create advanced materials. In particular, our ability to organise matter on the nanoscale has advanced considerably, but still lags far behind our skill in manipulating individual molecules. New tools allowing controlled nanoscale assembly are sorely needed, as well as the physical understanding of how they work. Here, we report such a method for the production of highly anisotropic nanoparticles with controlled dimensions based on a morphological transformation process (MORPH, for short) driven by the formation of supramolecular bonds. We present a minimal physical model for MORPH that suggests a general mechanism which is potentially applicable to a large number of polymer/nanoparticle systems. We envision MORPH becoming a valuable tool for controlling nanoscale self-assembly, and for the production of functional nanostructures for diverse applications.


2014 ◽  
Vol 1622 ◽  
pp. 55-60 ◽  
Author(s):  
Jonathan Liu ◽  
C. Wyatt Shields ◽  
Oluwatosin Omofoye ◽  
Gabriel P. Lopez

AbstractColloids with anisotropic shape and properties can enable the assembly of advanced materials otherwise not attainable by microfabrication. In this study, we present a convenient method using common microfabrication tools to generate a diverse array of non-spherical microparticles with well-defined shapes, sizes, electromagnetic properties for self-assembly applications. Projection photolithography onto SU-8 photoresist enabled the production of large aspect ratio microparticles such as cubes, cuboids, cylinders, hexagonal prisms, and parallelepipeds. We characterized these particles to confirm their anisotropic shape and size monodispersity. Fluorescent stains (e.g., Nile red) were mixed into the photoresist prepolymer to enhance the visualization of particle orientation. Particles designed for passive self-assembly were prepared by conventional photolithographic techniques. Particles designed for active assembly were then decorated with metallic patches in precise locations along the surface (e.g., top, side or multiple sides) using electron beam metal evaporation. This metal deposition process can enable orientational control of particles during their assembly in directed fields. After fabrication, large particles (e.g., 1,000 µm3) were released from the substrate via gentle sheer forces, whereas small particles (e.g., 10 µm3) were released by the dissolution of a sacrificial layer underneath the SU-8. Suspending the particles in water with surfactant (or other suitable solvents) provided amenable conditions for their assembly in static or dynamic systems. These conventional methods have the potential to catalyze new research in the fabrication and assembly of anisotropic patchy particles with controllable properties for the hierarchical development of self-assembled micromirrors, biosensors, and photonic crystals as examples.


Author(s):  
P. Toumsri ◽  
W. Auppahad ◽  
S. Saknaphawuth ◽  
B. Pongtawornsakun ◽  
S. Kaowphong ◽  
...  

Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO 3 H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H 2 SO 4 at 180°C gave mesoporous carbon bearing SO 3 H groups (SO 3 H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO 3 H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m 2  g −1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g −1 of SO 3 H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Evan K. Wujcik ◽  
Stephanie R. Aceto ◽  
Radha Narayanan ◽  
Arijit Bose

A self-assembly approach to lead selenide (PbSe) structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.


2019 ◽  
Vol 34 (17) ◽  
pp. 2911-2913
Author(s):  
Xin Zhang ◽  
Xianwen Zhang ◽  
Chongmin Wang

MRS Bulletin ◽  
2005 ◽  
Vol 30 (10) ◽  
pp. 727-735 ◽  
Author(s):  
Helmut Cölfen ◽  
Shu-Hong Yu

AbstractThe organization of nanostructures across several length scales by self-assembly is a key challenge in the design of advanced materials. In meeting this challenge, materials scientists can learn much from biomineralization processes in nature. These processes result in hybrid inorganic–organic materials with exquisite and optimized properties, complex forms, and hierarchical order over extended length scales.Biominerals are usually produced in the presence of an insoluble organic template as well as soluble molecules, which control inorganic crystallization, growth, and selfassembly. These processes can be mimicked successfully, resulting in inorganic–organic hybrid materials with complex form and mesoscale order via a nanoparticle selfassembly process.Various strategies can be applied, including the balancing of aggregation and crystallization, transforming and reorganizing of pre-formed nanoparticle building blocks, and face-selective coding of nanoparticle surfaces by additives for controlled self-assembly. The underlying principles of biomimetic mineralization will be described, along with selected examples showing that while much has already been achieved, the perfection of natural systems is still out of reach.


2004 ◽  
Vol 19 (5) ◽  
pp. 1471-1476 ◽  
Author(s):  
E. DiMasi ◽  
M. Sarikaya

Microstructured biomaterials such as mollusk shells receive much attention at present, due to the promise that advanced materials can be designed and synthesized with biomimetic techniques that take advantage of self-assembly and aqueous, ambient processing conditions. A satisfactory understanding of this process requires characterization of the microstructure not only in the mature biomaterial, but at the growth fronts where the control over crystal morphology and orientation is enacted. In this paper, we present synchrotron microbeam x-ray diffraction (XRD) and electron microscopy observations near the nacre–prismatic interface of red abalone shell. The relative orientations of calcite and aragonite grains exhibit some differences from the idealizations reported previously. Long calcite grains impinge the nacre–prismatic boundary at 45° angles, suggestive of nucleation on (104) planes followed by growth along the c axis. In the region within 100 μm of the boundary, calcite and aragonite crystals lose their bulk orientational order, but we found no evidence for qualitative changes in long-range order such as ideal powder texture or an amorphous structure factor. XRD rocking curves determined the mosaic of calcite crystals in the prismatic region to be no broader than the 0.3° resolution limit of the beamline’s capillary optics, comparable to what can be measured on geological calcite single crystals.


Sign in / Sign up

Export Citation Format

Share Document