Recent progress in spin-LED: realization of pure circular polarization EL at room temperature with current density of 10 A/cm2 (Conference Presentation)

2019 ◽  
Author(s):  
Nozomi Nishizawa ◽  
Hiro Munekata
2020 ◽  
Vol 35 (6) ◽  
pp. 630-645
Author(s):  
Jia-ying Yang ◽  
Hao-jie Han ◽  
Hlib Repich ◽  
Ri-cheng Zhi ◽  
Chang-zhen Qu ◽  
...  

2012 ◽  
Vol 3 (1) ◽  
Author(s):  
X.Z. Yu ◽  
N. Kanazawa ◽  
W.Z. Zhang ◽  
T. Nagai ◽  
T. Hara ◽  
...  

2014 ◽  
Vol 778-780 ◽  
pp. 899-902 ◽  
Author(s):  
Akio Takatsuka ◽  
Yasunori Tanaka ◽  
Koji Yano ◽  
Norio Matsumoto ◽  
Tsutomu Yatsuo ◽  
...  

3 kV normally-off SiC-buried gate static induction transistors (SiC-BGSITs) were fabricated by using an innovative fabrication process that was used by us previously to fabricate 0.7–1.2 kV SiC-BGSITs. The fabricated device shows the lowest specific on-resistance of 9.16 mΩ·cm2, compared to all other devices of the same class. The threshold voltage of this device was 1.4 V at room temperature and was maintained at values more than 1 V with normally-off characteristics at 200 °C. The device can block drain voltage of 3 kV with a leakage current density of 6.9 mA/cm2.


2021 ◽  
Vol 30 (1) ◽  
pp. 257-264
Author(s):  
Muna H. Kareem ◽  
Adi M. Abdul Hussein ◽  
Haitham Talib Hussein

Abstract In this study, porous silicon (PSi) was used to manufacture gas sensors for acetone and ethanol. Samples of PSi were successfully prepared by photoelectrochemical etching and applied as an acetone and ethanol gas sensor at room temperature at various current densities J= 12, 24 and 30 mA/cm2 with an etching time of 10 min and hydrofluoric acid concentration of 40%. Well-ordered n-type PSi (100) was carefully studied for its chemical composition, surface structure and bond configuration of the surface via X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy and photoluminescence tests. Results showed that the best sensitivity of PSi was to acetone gas than to ethanol under the same conditions at an etching current density of 30 mA/cm2, reaching about 2.413 at a concentration of 500 parts per million. The PSi layers served as low-cost and high-quality acetone gas sensors. Thus, PSi can be used to replace expensive materials used in gas sensors that function at low temperatures, including room temperature. The material has an exceptionally high surface-to-volume ratio (increasing surface area) and demonstrates ease of fabrication and compatibility with manufacturing processes of silicon microelectronics.


2015 ◽  
Vol 228 ◽  
pp. 269-272 ◽  
Author(s):  
Magdalena Popczyk ◽  
B. Łosiewicz

The Ni-Mo alloy coatings with a high content of Mo up to 44.5 at.%, were prepared by galvanostatic electrodeposition in the range of deposition current density, jdep, from-30 to-240 mA cm-2 from the nickel plating bath containing potassium pyrophosphate, nickel chloride, sodium molybdate, and sodium bicarbonate. Investigations of hydrogen evolution reaction (HER) were carried out in 5 M KOH solution at room temperature using steady-state polarization and electrochemical impedancy spectroscopy (EIS) measurements. It was found that for the Ni-Mo alloy coatings, the increase in their catalytic properties towards the HER with the increase in the value of jdep of the coatings, was due to the intrinsic activity.


1985 ◽  
Vol 53 ◽  
Author(s):  
F. Namavar ◽  
J. I. Budnick ◽  
F. H. Sanchez ◽  
H. C. Hayden

ABSTRACTWe have carried out a study to understand the mechanisms involved in the formation of buried SIO2 by high dose implantation of oxygen into Si targets. Oxygen ions were implanted at 150 keV with doses up to 2.5 X 1018 ions/cm2 and a current density of less than 10 μA/cm2 into Si 〈100〉 at room and liquid nitrogen temperatures. In-situ Rutherford backscattering (RBS) analysis clearly indicates the formation of uniform buried SIO2 for both room and liquid nitrogen temperatures for doses above 1.5 X 1018/cm2.Oxygen ions were implanted at room temperature into crystalline quartz to doses of about 1018 ions cm2 at 150 keV, with a current density of 〈10〉10 μA/cm2. The RBS spectra of the oxygen implanted quartz cannot be distinguished from those of unimplanted ones. Furthermore, Si ions were implanted into crystalline quartz at 80 keV and dose of 1 X 1017 Si/cm2, and a current aensity of about 1 μA/cm2. However, no signal from Si in excess of the SiO2 ratio could be observed. Our results obtained by RBS show that implantation of either Si+ or O into SiO2 under conditions stated above does not create a layer whose Si:O ratio differs measurably from that of SiO2.


1971 ◽  
Vol 49 (14) ◽  
pp. 2406-2411 ◽  
Author(s):  
Bansi L. Muju ◽  
Frank R. Smith

Radiochemical and electrochemical evidence is presented that electrochemically generated tritium and hydrogen atoms permeate through lead foil at measureable rates at room temperature. The permeation process is controlled by diffusion through the metal lattice, Fick's First Law being obeyed by both H and 3H atoms. Using earlier measurements of the diffusivity of H in Pb, H and 3H concentrations of 4 × 10−7 and 9 × 10−13 g-atom cm−3 are computed for a current density of 53 mA cm−2 at the Pb cathode surface.The overall hydrogen-tritium separation factor, ST is apparently 0.3 ± 0.15, in contrast to Bockris and Srinivasan's 6.7 and 7.2 for cathodic gas evolution from acidic and alkaline media, respectively. Reasons are suggested for this large difference.


Sign in / Sign up

Export Citation Format

Share Document