Formation of Buried Sio2 By High Dose Implantation of Oxygen at Room and Liquid Nitroeen Temperatures

1985 ◽  
Vol 53 ◽  
Author(s):  
F. Namavar ◽  
J. I. Budnick ◽  
F. H. Sanchez ◽  
H. C. Hayden

ABSTRACTWe have carried out a study to understand the mechanisms involved in the formation of buried SIO2 by high dose implantation of oxygen into Si targets. Oxygen ions were implanted at 150 keV with doses up to 2.5 X 1018 ions/cm2 and a current density of less than 10 μA/cm2 into Si 〈100〉 at room and liquid nitrogen temperatures. In-situ Rutherford backscattering (RBS) analysis clearly indicates the formation of uniform buried SIO2 for both room and liquid nitrogen temperatures for doses above 1.5 X 1018/cm2.Oxygen ions were implanted at room temperature into crystalline quartz to doses of about 1018 ions cm2 at 150 keV, with a current density of 〈10〉10 μA/cm2. The RBS spectra of the oxygen implanted quartz cannot be distinguished from those of unimplanted ones. Furthermore, Si ions were implanted into crystalline quartz at 80 keV and dose of 1 X 1017 Si/cm2, and a current aensity of about 1 μA/cm2. However, no signal from Si in excess of the SiO2 ratio could be observed. Our results obtained by RBS show that implantation of either Si+ or O into SiO2 under conditions stated above does not create a layer whose Si:O ratio differs measurably from that of SiO2.

1984 ◽  
Vol 33 ◽  
Author(s):  
P. L. F. Hemment

ABSTRACTSilicon on insulator structures consisting of a buried dielectric, formed by the implantation of high doses of oxygen ions, have been shown to be suitable substrates for LSI circuits. The substrates are compatible with present silicon processing technologies and are confidently expected to be suitable for VLSI circuits. In this paper the microstructure and physical properties of this SOI material will be described and the dependence of these characteristics upon the implantation conditions and subsequent thermal processing will be discussed. With this information, it is then possible to outline the specification for a high current oxygen implanter.


2017 ◽  
Vol 897 ◽  
pp. 411-414 ◽  
Author(s):  
Craig A. Fisher ◽  
Romain Esteve ◽  
Stefan Doering ◽  
Michael Roesner ◽  
Martin de Biasio ◽  
...  

In this paper, an investigation into the crystal structure of Al-and N-implanted 4H-SiC is presented, encompassing a range of physical and electrical analysis techniques, with the aim of better understanding the material properties after high-dose implantation and activation annealing. Scanning spreading resistance microscopy showed that the use of high temperature implantation yields more uniform resistivity profiles in the implanted layer; this correlates with KOH defect decoration and TEM observations, which show that the crystal damage is much more severe in room temperature implanted samples, regardless of anneal temperature. Finally, stress determination by means of μRaman spectroscopy showed that the high temperature implantation results in lower tensile stress in the implanted layers with respect to the room temperature implantation samples.


1971 ◽  
Vol 49 (14) ◽  
pp. 2406-2411 ◽  
Author(s):  
Bansi L. Muju ◽  
Frank R. Smith

Radiochemical and electrochemical evidence is presented that electrochemically generated tritium and hydrogen atoms permeate through lead foil at measureable rates at room temperature. The permeation process is controlled by diffusion through the metal lattice, Fick's First Law being obeyed by both H and 3H atoms. Using earlier measurements of the diffusivity of H in Pb, H and 3H concentrations of 4 × 10−7 and 9 × 10−13 g-atom cm−3 are computed for a current density of 53 mA cm−2 at the Pb cathode surface.The overall hydrogen-tritium separation factor, ST is apparently 0.3 ± 0.15, in contrast to Bockris and Srinivasan's 6.7 and 7.2 for cathodic gas evolution from acidic and alkaline media, respectively. Reasons are suggested for this large difference.


CrystEngComm ◽  
2018 ◽  
Vol 20 (45) ◽  
pp. 7329-7336 ◽  
Author(s):  
Xingang Kong ◽  
Xing Wang ◽  
Dingying Ma ◽  
Jianfeng Huang ◽  
Jiayin Li ◽  
...  

Porous network Zn2Ti3O8 platelike nanoarchitecture was prepared by an ion exchange reaction and further in situ topotactic transformation, and it exhibited an enhanced reversibility capacity of 408 mA h g−1 after 1000 cycles at a current density of 1 Ag−1.


2008 ◽  
Vol 600-603 ◽  
pp. 1063-1066 ◽  
Author(s):  
Konstantin Vassilevski ◽  
Keith P. Hilton ◽  
Nicolas G. Wright ◽  
Michael J. Uren ◽  
A.G. Munday ◽  
...  

Trenched and implanted vertical JFETs (TI-VJFETs) with blocking voltages of 700 V were fabricated on commercial 4H-SiC epitaxial wafers. Vertical p+-n junctions were formed by aluminium implantation in sidewalls of strip-like mesa structures. Normally-on 4H-SiC TI-VJFETs had specific on-state resistance (RO-S ) of 8 mW×cm2 measured at room temperature. These devices operated reversibly at a current density of 100 A/cm2 whilst placed on a hot stage at temperature of 500 °C and without any protective atmosphere. The change of RO-S with temperature rising from 20 to 500 °C followed a power law (~ T 2.4) which is close to the temperature dependence of electron mobility in 4H-SiC.


2012 ◽  
Vol 584 ◽  
pp. 556-560 ◽  
Author(s):  
B. Gopi ◽  
N. Naga Krishna ◽  
K. Sivaprasad ◽  
K. Venkateswarlu

The present work investigates the effect of rolling temperature on the mechanical properties and microstructural evolution of an Al-Mg-Si alloy with 3wt% TiB2 in-situ composite that was fabricated by stir casting route. The composite was rolled to a true strain of ≈0.7 at three different temperatures viz; room temperature (RT), liquid propanol (LP) and liquid nitrogen (LN) temperatures. Tensile tests revealed that the samples rolled at liquid nitrogen temperature exhibited improved properties compared to the samples rolled at other two temperatures. A tensile strength and ductility of 291 MPa and 8% respectively were exhibited by the liquid nitrogen rolled sample. The strength is observed to be ≈12% higher and ductility is ≈60% more when compared to the room temperature rolled sample. X ray diffraction peaks indicated that rolled samples exhibited considerable increase in peak broadening compared to the unrolled one, which is attributed to the increase of the lattice strain due to distortion and the decrease in grain size of the material. The enhanced mechanical properties of the liquid nitrogen rolled samples were attributed to the combined effect of grain refinement and accumulation of higher dislocation density.


2020 ◽  
Vol 4 (1) ◽  
pp. 312-323 ◽  
Author(s):  
Harsharaj S. Jadhav ◽  
Animesh Roy ◽  
Bezawit Z. Desalegan ◽  
Jeong Gil Seo

A room-temperature synthesized NiFeCe2 electrocatalyst delivered a current density of 10 mA cm−2 at a cell voltage of 1.59 V when used as the electrolyzer.


1996 ◽  
Vol 438 ◽  
Author(s):  
H. Weishart ◽  
J. Schoneich ◽  
M. Voelskow ◽  
W. Skorupa

AbstractWe studied high dose implantation of tungsten into 6H-silicon carbide in order to synthesize an electrically conductive layer. Implantation was performed at 200 keV with a dose of 1.2x 1017 WIcm 2 at temperatures between 200°C and 400°C. The influence of implantation temperature on the distribution of W in SiC was investigated and compared to results obtained earlier from room temperature (RT) and 500°C implants. Rutherford backscattering spectrometry (RBS) was employed to study the structure and composition of the implanted layers. Implantation at temperatures between RT and 300°C did not influence the depth distribution of C, Si and W. The W depth profile shows a conventional Gaussian shape. Implanting at higher temperatures led to a more confined W rich layer in the SiC. This confinement is explained by Ostwald ripening which is enabled during implantation at temperatures above 300°C. The depth of the implantation induced damage decreases slightly with increasing implantation temperature, except for 400°C implantation. The amount of damage, however, is significantly reduced only for implantation at 500°C.


1985 ◽  
Vol 45 ◽  
Author(s):  
F. Namavar ◽  
J.I. Budnick ◽  
F.H. Sanchez ◽  
H.C. Hayden

ABSTRACTOxygen 0+ ions have been implanted into Si both at room temperature and liquid nitrogen temperature in order to determine the effect of implantation temperature on SiO2 formation. Samples were analysed by RBS with 1.5 MeV He+ ions. The implants of 0+ in Si were done at 150 keV with current densities of ≤10 μA/cm2. For doses of more than 1.5×1018 0+/cm2, in-situ RBS experiments positively indicate a 2:1 oxygen silicon ratio. Increased 0+ doses (for both room temperature and liquid nitrogen temperature) cause the Si02 layers to spread uniformly and symmetrically toward both the surface and the interior. From these results, it is apparent that excess oxygen diffuses toward Si/Si02 interfaces in our experimental situation even at liquid nitrogen temperature.


2011 ◽  
Vol 04 (01) ◽  
pp. 31-36 ◽  
Author(s):  
QING LU ◽  
YIKAI ZHOU

Herein, a modified interfacial synthetic route has been demonstrated by synthesizing uniform poly(3,4-ethylenedioxythiophene)/ MnO 2 hierarchical mesoporous nanocomposite. The in-situ generated polymer has been proven to be effective in constraining the overgrowth of nuclei. Consequently, assembled nanosheets with a thickness less than 5 nm have been prepared. At a high rate of 10 A g-1 charge/discharge process, the nanocomposite electrode retains 73.4% of the specific capacitance exhibited at 1 A g-1. At a current density as large as 800 mA g-1, the nanocomposite electrode attains reversible lithium storage specific capacities of 400 mAh g-1 after 50 cycles and 300 mAh g-1 after 100 cycles. The excellent high-rate performance of the nanocomposite electrode is highlighted in terms of its extremely large surface area, unique microstructure and mesoporous features.


Sign in / Sign up

Export Citation Format

Share Document