Antimicrobial photodynamic therapy: from basis to clinical applications

Author(s):  
Martha S. Ribeiro ◽  
Caetano Sabino ◽  
Silvia Núñez
2021 ◽  
Author(s):  
Natalia M. Inada ◽  
Lucas D. Dias ◽  
Kate C. Blanco ◽  
Giulia Kassab ◽  
Hilde H. Buzzá ◽  
...  

Antimicrobial resistance (AMR) and its relevant health consequences have been explicitly framed as a shared global problem and are estimated to be one of the largest causes of death worldwide by 2050. Antimicrobial photodynamic therapy (aPDT) proposes an alternative treatment for localized infections in response to AMR’s ever-growing problem. This technique combines molecular oxygen, a non-toxic photoactivatable photosensitizer (PS), and light of appropriate wavelength, leading to the formation of cytotoxic reactive oxygen species. Besides the ability to inactivate resistant pathogens via a non-selective approach (multiple targets), a relevant advantage of aPDT resides in the fact that no evidence of microorganism resistance has ever been reported to it. In this chapter, we address some efforts to use this technology to kill bacteria in the respiratory tract, from in vitro to clinical applications. We put forward three focuses: pharyngotonsillitis, pneumonia, and preventing secondary infections during the use of a photosensitizer-functionalized endotracheal tube. The results here presented offer a foundation for what may become a much larger clinical approach to treat respiratory tract infections.


Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.


2021 ◽  
Vol 14 (7) ◽  
pp. 603
Author(s):  
Vanesa Pérez-Laguna ◽  
Isabel García-Luque ◽  
Sofía Ballesta ◽  
Antonio Rezusta ◽  
Yolanda Gilaberte

The present review covers combination approaches of antimicrobial photodynamic therapy (aPDT) plus antibiotics or antifungals to attack bacteria and fungi in vitro (both planktonic and biofilm forms) focused on those microorganisms that cause infections in skin and soft tissues. The combination can prevent failure in the fight against these microorganisms: antimicrobial drugs can increase the susceptibility of microorganisms to aPDT and prevent the possibility of regrowth of those that were not inactivated during the irradiation; meanwhile, aPDT is effective regardless of the resistance pattern of the strain and their use does not contribute to the selection of antimicrobial resistance. Additive or synergistic antimicrobial effects in vitro are evaluated and the best combinations are presented. The use of combined treatment of aPDT with antimicrobials could help overcome the difficulty of fighting high level of resistance microorganisms and, as it is a multi-target approach, it could make the selection of resistant microorganisms more difficult.


Sign in / Sign up

Export Citation Format

Share Document