Fleet-based life-cycle carbon dioxide assessment of China’s passenger vehicle fleet to meet the 2060 carbon neutrality target

2021 ◽  
Author(s):  
Jianxin Li ◽  
Huanran Liu ◽  
Mingnan Zhao ◽  
Yan Zhang ◽  
Ting Zhang ◽  
...  
2020 ◽  
Vol 12 (12) ◽  
pp. 5032 ◽  
Author(s):  
Antti Lajunen ◽  
Klaus Kivekäs ◽  
Jari Vepsäläinen ◽  
Kari Tammi

Different estimations have been presented for the amount of electric vehicles in the future. These estimations rarely take into account any realistic dynamics of the vehicle fleet. The objective of this paper is to analyze recently presented future scenarios about the passenger vehicle fleet estimations and create a foundation for the development of a fleet estimation model for passenger cars dedicated to the Finnish vehicle market conditions. The specific conditions of the Finnish light-duty vehicle fleet are taken into account as boundary conditions for the model development. The fleet model can be used for the estimation of emissions-optimal future vehicle fleets and the evaluation of the carbon dioxide emissions of transportation. The emission analysis was done for four different scenarios of the passenger vehicle fleet development in Finland. The results show that the high average age of the fleet and high number of older gasoline vehicles will slow down the reduction of carbon dioxide emissions during the next five to ten years even with a high adoption rate of electric vehicles. It can be concluded that lowering the average age, increasing biofuel mixing ratios, and increasing the amount of rechargeable electric vehicles are the most effective measures to reduce carbon dioxide emissions of the Finnish passenger vehicle fleet in the future.


2014 ◽  
Vol 90 (05) ◽  
pp. 577-585 ◽  
Author(s):  
Francesca Pierobon ◽  
Indroneil Ganguly ◽  
Tommaso Anfodillo ◽  
Ivan L. Eastin

The “carbon neutrality” assumption plays an important role in the evaluation of the global warming potential (GWP) of bioenergy relative to fossil fuels. In the case of woody bioenergy, this assumption implies that the carbon dioxide emitted during the combustion of the biomass is equal to the carbon dioxide sequestered from the atmosphere within that biomass. However, the collection and conversion of woody biomass requires energy inputs in various forms that produce emissions to the air or water. To be able to estimate the overall environmental burdens associated with converting woody biomass to bioenergy, and the net reduction in greenhouse gas (GHG) emissions to the atmosphere by avoiding the use of fossil fuel, a life cycle assessment (LCA) is the internationally recognized method of choice. However, the carbon neutrality of woody biomass and the environmental impacts associated with wood-based bioenergy are hotly debated in national and international arenas. This study presents a comprehensive evaluation of the environmental impacts of woody biomass-based bioenergy and proposes a GWP impact assessment methodology using radiative forcing for incorporating the dynamics of carbon sequestration, decomposition of residues and biomass processing in the life cycle assessment of bioenergy.


2013 ◽  
Author(s):  
Timothy J. Skone ◽  
Robert E. James III ◽  
Greg Cooney ◽  
Matt Jamieson ◽  
James Littlefield ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


2021 ◽  
Vol 11 (5) ◽  
pp. 2009
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The depletion of fossil fuels and climate change concerns are drivers for the development and expansion of bioenergy. Promoting biomass is vital to move civilization toward a low-carbon economy. To meet European Union targets, it is required to increase the use of agricultural residues (including straw) for power generation. Using agricultural residues without accounting for their energy consumed and carbon dioxide emissions distorts the energy and environmental balance, and their analysis is the purpose of this study. In this paper, a life cycle analysis method is applied. The allocation of carbon dioxide emissions and energy inputs in the crop production by allocating between a product (grain) and a byproduct (straw) is modeled. Selected crop yield and the residue-to-crop ratio impact on the above indicators are investigated. We reveal that straw formation can consume between 30% and 70% of the total energy inputs and, therefore, emits relative carbon dioxide emissions. For cereal crops, this energy can be up to 40% of the lower heating value of straw. Energy and environmental indicators of a straw return-to-field technology and straw power generation systems are examined.


2013 ◽  
Vol 689 ◽  
pp. 546-550
Author(s):  
Xue Hong Gan ◽  
Wei Wang ◽  
Shi Mei Liu

To build carbon dioxide emission evaluation model in construction life cycle is the key link to make low-carbon research of theoretical studies head towards practical application. For the first time, residential quarter is selected as the object in the study, carbon dioxide emission management responsibility of owner and property being considered and carbon dioxide emission evaluation model in construction life cycle based on matlab as well as database of carbon dioxide factor being built initially. Net carbon dioxide emission information will be shown timely, then carbon dioxide emission and absorption can be adjusted by property management accordingly.


2013 ◽  
Vol 849 ◽  
pp. 380-386 ◽  
Author(s):  
Ren Jin Sun ◽  
Keng H. Chung ◽  
Siauw Ng ◽  
Hao Wang

Life cycle cost (LCC) analysis was performed for a 1.6 million tons per year (30,000 BPD) delayed coking unit. The results show that the LCC of coke production is higher than the price of coke and profits are obtained at the expense of environmental costs. The feedstock cost accounts for a majority of LCC. The variability impacts of processing expenses and carbon dioxide (CO2) price on LCC are relative similar. This suggests that if a higher CO2 price is imposed on coke production, it is unlikely that the producer will make any effort to reduce the CO2 emissions either by improving the efficiency of coking process or implement CO2 remediation initiatives. The CO2 price increase will be considered as a processing cost increase. The green factor (GF) is predominantly dependent on coke price; an increased coke price improves the GF significantly. Increased CO2 price has a negative impact on GF, but the relative incremental impact of CO2 price on GF is less at high CO2 prices. Hence, there is little can be done to improve the GF of coke production, since the coke price is beyond the control of coke producer.


Sign in / Sign up

Export Citation Format

Share Document