Light scattering in turbid media: insights to optical imaging with single-scattered and multiply scattered light

Author(s):  
Kostadinka K. Bizheva ◽  
David A. Boas
2020 ◽  
Vol 10 (18) ◽  
pp. 6234
Author(s):  
Ines Delfino ◽  
Maria Lepore ◽  
Rosario Esposito

Different scattering processes take place when photons propagate inside turbid media. Many powerful experimental techniques exploiting these processes have been developed and applied over the years in a large variety of situations from fundamental and applied research to industrial applications. In the present paper, we intend to take advantage of Static Light Scattering (SLS), Dynamic Light Scattering (DLS), and Time-Resolved Transmittance (TRT) for investigating all the different scattering regimes by using scattering suspensions in a very large range of scatterer concentrations. The suspensions were prepared using Intralipid 20%, a material largely employed in studies of the optical properties of turbid media, with concentrations from 10−5% to 50%. By the analysis of the angular and temporal dependence of the scattered light, a more reliable description of the scattering process occurring in these samples can be obtained. TRT measurements allowed us to obtain information on the reduced scattering coefficient, an important parameter largely used in the description of the optical properties of turbid media. TRT was also employed for the detection of inclusions embedded in Intralipid suspensions, by using a properly designed data analysis. The present study allowed us to better elucidate the dependence of scattering properties of Intralipid suspensions in a very large concentration range and the occurrence of the different scattering processes involved in the propagation of light in turbid media for the first time to our knowledge. In so doing, the complementary contribution of SLS, DLS, and TRT in the characterization of turbid media from an optical and structural point of view is strongly evidenced.


2001 ◽  
Vol 66 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Čestmír Koňák ◽  
Jaroslav Holoubek ◽  
Petr Štěpánek

A time-resolved small-angle light scattering apparatus equipped with azimuthal integration by means of a conical lens or software analysis of scattering patterns detected with a CCD camera was developed. Averaging allows a significant reduction of the signal-to-noise ratio of scattered light and makes this technique suitable for investigation of phase separation kinetics. Examples of applications to time evolution of phase separation in concentrated statistical copolymer solutions and dissolution of phase-separated domains in polymer blends are given.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Francesco Ruffino

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core–shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.


Author(s):  
Gernot Seebacher ◽  
Axel A. Schmidt ◽  
Jochen Offermann

The paper provides background on how bilge water has changed over the years and how technology has enabled manufacturers to stay ahead of the curve by borrowing technological breakthroughs from other areas to the measurement of oil content in the marine environment. Light scattering provides today a universal and reliable method, able to measure the wide range of oils present in a wildly variable and unpredictable bilge water mixture. Bilge water regulations were put in place to reduce the potential of harm to the environment from oily bilge water discharges. Regulations require that instruments verify effluent quality continually during the discharge process, which precludes the adoption for shipboard use of standard laboratory style testing with the associated time delays to complete the analysis. Measuring oil content with the light scattering measuring instrument is a tried and tested means for compliant bilge water verification. State of the art instruments employ sophisticated light measuring systems and they use complex algorithms to convert the scattered light pattern values into oil content reading, thereby considering interference from other than oil suspended matter, they prevent harm to the environment from bilge water discharges. Paper published with permission.


2009 ◽  
Vol 17 (16) ◽  
pp. 13792 ◽  
Author(s):  
Edouard Berrocal ◽  
David L. Sedarsky ◽  
Megan E. Paciaroni ◽  
Igor V. Meglinski ◽  
Mark A. Linne

2007 ◽  
Vol 15 (17) ◽  
pp. 10649 ◽  
Author(s):  
Edouard Berrocal ◽  
David L. Sedarsky ◽  
Megan E. Paciaroni ◽  
Igor V. Meglinski ◽  
Mark A. Linne

MRS Advances ◽  
2020 ◽  
Vol 5 (17) ◽  
pp. 865-880 ◽  
Author(s):  
Preethi L Chandran

Abstract:In techniques such as Dynamic Light Scattering (DLS), Fluorescence Correlation Spectroscopy, and image mining, motion is tracked by the autocorrelation of a signal over logarithmic time scales. For instance the tracking signal in DLS is the scattered light intensity; it remains correlated at time scales where scant changes in the arrangement of the scattering particles occur, but decays exponentially at the time scales of their diffusion. When there are multiple time scales of motion (for instance due to scatterers of different sizes), the correlation curve has more than one exponential fall. Extracting the decay constants or hydrodynamic sizes due to each exponential fall in a multi-species field correlation curve becomes an ill-conditioned mathematical problem. We describe a new algorithm to invert a multi-modal correlation curve by Sequential Extraction of the Late Exponentials (SELE). The idea is that while the inversion of a multi-exponential equation may be ill posed, that of a single exponential is not. So we fit data windows towards to base of the correlation curve to extract the largest contribution species, remove the species contribution from the correlation curve, and repeat the process with the remnant curve. The single exponent can be robustly fitted by least-square minimization with initial guesses generated by an adapted cumutant technique (power-series) that includes stretch coefficients (measure of sample dispersity). The proposed algorithm resolves particle sizes separated by 3X, and is reliable against fluctuations in the correlation curve and to localized regions of suboptimal data. The algorithm can be used to track particle dynamics in solution in multi-species problems such as self-assembly.


2020 ◽  
Vol 75 (1) ◽  
pp. 94-106
Author(s):  
Jennifer Aldama ◽  
Zhenqi Shi ◽  
Carlos Ortega-Zúñiga ◽  
Rodolfo J. Romañach ◽  
Sergiy Lysenko

Fractal and polarization analysis of diffusively scattered light is applied to determine the complex relationship between fractal dimension of structural morphology and concentration of chemically active ingredients in two pharmaceutical mixture systems including a series of binary mixtures of acetaminophen in lactose and three multicomponent blends with a proprietary active ingredient. A robust approach is proposed to identify and filter out multiple- and single-scattering components of scattering indicatrix. The fractal dimension extracted from scattering field reveals complex structural details of the sample, showing strong dependence on low-dose drug concentration in the blend. Low-angle diffraction shows optical “halo” patterns near the angle of specular reflection caused by light refraction in microcrystalline aggregates. Angular measurements of diffuse reflection demonstrate noticeable dependence of Brewster's angle on drug concentration. It is shown that the acetaminophen microcrystals produce scattered light depolarization due to their optical birefringence. The light scattering measurement protocol developed for diffusively scattered light by microcrystalline pharmaceutical compositions provides a novel approach for the pattern recognition, analysis and classification of materials with a low concentration of active chemical ingredients.


1995 ◽  
Author(s):  
Lev T. Perelman ◽  
Jun Wu ◽  
Irving Itzkan ◽  
Yang Wang ◽  
Ramachandra R. Dasari ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document