Bill Armstrong memorial session: elastic modulus and strain recovery testing of variable stiffness composites for structural reconfiguration applications

Author(s):  
Geoff McKnight ◽  
Robert Doty ◽  
Guillermo Herrera ◽  
Chris Henry
Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 511 ◽  
Author(s):  
Baara ◽  
Baharudin ◽  
Anuar ◽  
Ismail

Commercial finite element software that uses default hardening model simulation is not able to predict the final shape of sheet metal that changes its dimensions after removing the punch due to residual stress (strain recovery or springback). We aimed to develop a constitutive hardening model to more accurately simulate this final shape. The strain recovery or balancing of residual stress can be determined using the isotropic hardening of the original elastic modulus and the hardening combined with varying degrees of elastic modulus degradation and the size of the yield surfaces. The Chord model was modified with one-yield surfaces. The model was combined with nonlinear isotropic–kinematic hardening models and implemented in Abaqus user-defined material subroutine for constitutive model (UMAT). The Numisheet 2011 benchmark for springback prediction for DP780 high-strength steel sheet was selected to verify the new model, the Chord model, the Quasi Plastic-Elastic (QPE) model, and the default hardening model using Abaqus software. The simulation of U-draw bending from the Numisheet 2011 benchmark was useful for comparing the proposed model with experimental measurements. The results from the simulation of the model showed that the new model more accurately predicts springback than the other models.


2011 ◽  
Vol 23 (3) ◽  
pp. 279-290 ◽  
Author(s):  
Yijin Chen ◽  
Jian Sun ◽  
Yanju Liu ◽  
Jinsong Leng

In this research, a fluidic flexible matrix composites (F2MC) tube composed of flexible matrix composite (FMC) and inner liner is investigated. Significant changes in effective axial elastic modulus could be achieved through controlling the interior fluid. Based on classical laminated-plate theory and anisotropic elasticity, a three-dimensional analytical method is proposed to characterize the axial mechanical behavior of the F2MC tube. In comparison with the experiment result, the analysis is deemed to possess satisfying accuracy in the effective axial elastic modulus prediction of the F2MC tube. In addition, the effective axial elastic modulus ratio is discussed under different material and geometry parameters of the tube. The analysis result shows that the modulus ratio can reach up to 120 by refining the material and geometry parameters. Therefore, the investigated F2MC tube could serve as potential candidate for the morphing skin applications with variable stiffness.


2019 ◽  
Author(s):  
Mazen Albazzan ◽  
Brian Tatting ◽  
Ramy Harik ◽  
Zafer Gürdal ◽  
Adriana Blom-Schieber ◽  
...  

The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 690-696 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhafeez

Sign in / Sign up

Export Citation Format

Share Document