Cylindrical Part Recognition In Occluding Contours

Author(s):  
Minoru Etoh ◽  
Akira Tomono ◽  
Yukio Kobayashi
2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


Author(s):  
Luis Celaya-García ◽  
Miguel Gutierrez-Rivera ◽  
Elías Ledesma-Orozco ◽  
Salvador M. Aceves

Abstract This article describes the manufacture, testing, and finite element modeling of prototype pressure vessels made of steel and reinforced with high-strength steel wire in the cylindrical part. Vessel prototypes were manufactured with pipe fittings and either no wire reinforcement, one layer of wire reinforcement, or two layers of wire reinforcement, with the purpose of developing an improved understanding of the effect of the wire reinforcement, and the number of reinforcement layers on prototype pressure strength. Pressure tests were conducted for instrumented vessels to determine strength up to 70 bar with a test system equipped with pressure and velocity regulators to guarantee the stability of the supplied flow and improve measurement accuracy and repeatability. Finite element modeling is conducted with the commercial code ANSYS and equivalent orthotropic properties obtained with the unit cell method, assuming a high value for the volume fraction of steel wire, and a matrix with low elastic properties compared with those of the steel wire. The results show that there is an interaction between the cylindrical part and the reinforcing wire, and that this relation is affected by external factors resulting from manufacturing process and material properties. Strain reduction in prototypes with thicker reinforcement is an indicator of the improvement on pressure resistance.


Zootaxa ◽  
2021 ◽  
Vol 4965 (2) ◽  
pp. 385-395
Author(s):  
JANS MORFFE ◽  
NAYLA GARCÍA ◽  
KOICHI HASEGAWA ◽  
RAMON A. CARRENO

Buzionema lutgardae n. sp. (Nematoda: Oxyuridomorpha: Thelastomatidae) is described from the cockroach Byrsotria sp. (Blattaria: Blaberidae), endemic to Cuba. Females of B. lutgardae n. sp. are shorter than those of B. validum Kloss, 1966 (1600–2150 µm vs. 3131–3378 µm), but the oesophagus is comparatively longer (b = 2.96–3.77 vs. 4.65–4.87). The lateral alae of the new species extend from ca. the midpoint of the cylindrical part of the procorpus to the level of the anus in contrast to the base of the basal bulb to the level of the anus in B. validum. The males of B. lutgardae n. sp. are shorter than those of B. validum (780–940 µm vs. 1177–1423 µm) and their lateral alae end at some distance before the cloaca instead the level of the cloaca in B. validum. The phylogeny of B. lutgardae n. sp. is inferred by the D2-D3 domains of the 28S rDNA. B. lutgardae n. sp. and B. validum form a monophyletic clade with strong nodal support, as sister-group of the genus Leidynema Schwenck in Travassos, 1929. 


Author(s):  
Guido M. J. Delhaes ◽  
Anton van Beek ◽  
Ron A. J. van Ostayen ◽  
Robert H. Munnig Schmidt

In this paper an innovative air driven spindle for micro cutting applications is presented. The spindle uses a viscous traction concept which has the advantage that the viscous traction forces can act directly on the cylindrical part of the tool, which makes the tool-holder redundant. Furthermore, the tool can be actuated in the axial direction within the housing. In this paper the concept of the viscous turbine, a design of a prototype spindle along with the traction and load-capacity of the spindle are discussed.


2020 ◽  
Vol 26 ◽  
pp. 122
Author(s):  
Jon Asier Bárcena-Petisco

In this paper we prove the null controllability of the heat equation in domains with a cylindrical part and limited by a Lipschitz graph. The proof consists mainly on getting a Carleman estimate which presents the usual absorption properties. The main difficulty we face is the loss of existence of the usual weighted function in C2 smooth domains. In order to deal with this, we use its cylindrical structure and approximate the system by the same system stated in regular domains. Finally, we show some applications like the controllability of the semi-linear heat equation in those domains.


2008 ◽  
Vol 591-593 ◽  
pp. 358-361
Author(s):  
J.F. Nunes ◽  
J.R. Lira ◽  
João Jorge Ribeiro Damasceno

The settling vessels are equipment destined to solid-liquid separation; usually have continuous operation, with a circular section, presenting one conic and one cylindrical part. They are very used in chemical industries: wastewater treatment, minerals industries; to concentrate or to remove the solids. The solid particle splitting with small granular becomes difficult through the operation of conventional sedimentation. An expedient very used in the industry is the flocculant substance addition, whose objective is to promote the precipitation of particles, with decantation speed is upper than the single one. The present work aim the study of the burst operational conditions that influence the formation and the stability of these aggregates, the flake, the effect of pH and the concentration of flocculant using kaolin suspension and genfloc, that contains aluminum sulfate, as a flocculant; and the capacity of conventional settling vessel, which area of the transversal remains constant, considering this operational conditions.


Author(s):  
A.V. Voronetskiy ◽  
K.Yu. Arefiev ◽  
M.A. Abramov

The purpose of this research was to investigate the spatial structure of a two-phase flow in a supersonic model channel of circular cross-section with a diameter of the cylindrical part of ~10 mm. For modeling, we used the Euler-Lagrange approach in combination with a probabilistic estimate of the dispersed particles deviation from their base trajectory. Chromium-nickel alloy particles with a diameter of 15 to 40 μm move in the channel in a special way, which was considered in the paper. Furthermore, we analyzed how the nature of the distribution function of the particle’s root-mean-square deviation from its base trajectory influences the quality of mixing of the dispersed phase with the flow and the number of particles interacting with the walls of the flow path.


Author(s):  
Jin Sun ◽  
Christopher Thorpe ◽  
Nianhua Xie ◽  
Jingyi Yu ◽  
Haibin Ling

Author(s):  
Atsushi Matsubara ◽  
Kotaro Mori ◽  
Daisuke Kono

Abstract Aircraft engine cases employ a thin-walled cylindrical structure for the reduction of fuel consumption. The machining of such parts requires support systems as cutting forces generate shell mode vibrations. There has been much research on the design of vibration suppression devices such as mass dampers, tuned mass dampers, active dampers, and fixturing stretch. Although such devices can offer excellent performance in vibration suppression, cost, and time for manufacturing and setup with tuning are problems. In this paper, the test results of a simple support system that suppresses the vibration modes of a cylindrical part are reported. A support element employs two-contacts in the curved surface. Multiple support elements are arranged according to the number of antinodes of shell modes. Each support has two rollers with a rotating head; the roller contact aligned in the curved surface. For the decision of the number of the support elements, modal analysis was carried out for a cylindrical part. An excitation test was carried out to evaluate the frequency response of a supported cylinder, and several peaks in frequency response were found to be suppressed. A cutting test with an endmill was carried out to evaluate the vibration levels. The experimental results show that the support can suppress forced vibration during machining.


Sign in / Sign up

Export Citation Format

Share Document