Nonlinear bulk wave in a functionally graded symmetric hysteretic material model—A numerical study

2021 ◽  
Vol 149 (4) ◽  
pp. A138-A138
Author(s):  
Pravinkumar Ramchandra Ghodake
2020 ◽  
Vol 9 (1) ◽  
pp. 256-264
Author(s):  
Dinkar Sharma ◽  
Ramandeep Kaur

AbstractThis paper presents, numerical study of stress field in functionally graded material (FGM) hollow cylinder by using finite element method (FEM). The FGM cylinder is subjected to internal pressure and uniform heat generation. Thermoelastic material properties of FGM cylinder are assumed to vary along radius of cylinder as an exponential function of radius. The governing differential equation is solved numerically by FEM for isotropic and anistropic hollow cylinder. Additionally, the effect of material gradient index (β) on normalized radial stresses, normalized circumferential stress and normalized axial stress are evaluated and shown graphically. The behaviour of stress versus normalized radius of cylinder is plotted for different values of Poisson’s ratio and temperature. The graphical results shown that stress field in FGM cylinder is influenced by some of above mentioned parameters.


Author(s):  
Svein Sævik ◽  
Martin Storheim ◽  
Erik Levold

MARINTEK has developed software for detailed analysis of pipelines during installation and operation. As part of the software development a new coating finite element was developed in cooperation with StatoilHydro enabling efficient analysis of field joint strain concentrations of long concrete coated pipeline sections. The element was formulated based on sandwich beam theory and application of the Principle of Potential Energy. Large deformations and non-linear geometry effects were handled by a Co-rotated “ghost” reference description where elimination of rigid body motion was taken care of by referring to relative displacements in the strain energy term. The non-linearity related to shear interaction and concrete material behaviour was handled by applying non-linear springs and a purpose made concrete material model. The paper describes the theoretical formulation and numerical studies carried out to verify the model. The numerical study included comparison between model and full-scale tests as well as between model and other commercial software. At last a 3000 m long pipeline was analysed to demonstrate the strain concentration behaviour of a concrete coated pipeline exposed to high temperature snaking on the seabed.


2021 ◽  
pp. 114833
Author(s):  
Weihua Fang ◽  
Huifeng Hu ◽  
Tiantang Yu ◽  
Tinh Quoc Bui

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4855
Author(s):  
Maodan Yuan ◽  
Anbang Dai ◽  
Lin Liao ◽  
Yan Chen ◽  
Xuanrong Ji

Ultrasonic is one of the well-known methods for surface roughness measurement, but small roughness will only lead to a subtle variation of transmission or reflection. To explore sensitive techniques for surfaces with small roughness, nonlinear ultrasonic measurement in through-transmission and pulse-echo modes was proposed and studied based on an effective unit-cell finite element (FE) model. Higher harmonic generation in solids was realized by applying the Murnaghan hyperelastic material model. This FE model was verified by comparing the absolute value of the nonlinearity parameter with the analytical solution. Then, random surfaces with different roughness values ranging from 0 μm to 200 μm were repeatedly generated and studied in the two modes. The through-transmission mode is very suitable to measure the surfaces with roughness as small as 3% of the wavelength. The pulse-echo mode is sensitive and effective to measure the surface roughness ranging from 0.78% to 5.47% of the wavelength. This study offers a potential nondestructive testing and monitoring method for the interfaces or inner surfaces of the in-service structures.


Author(s):  
Lei Ge ◽  
Yantao Wang ◽  
Huipeng Hu ◽  
Lijun Li ◽  
Yiben Zhang

Polymethylmethacrylate (PMMA) has been widely utilized to manufacture the covers of aircraft cockpits, naval vessels, car windows and so on, due to their high transmittance, low density, easy processing formability, high corrosion resistance and excellent mechanical properties. Under special conditions such as ejection lifesaving, the PMMA plate needs to be split precisely by explosion cutting technology. Hence, an accurate numerical simulation of PMMA structures is significantly important in engineering application. This paper aims to study the cutting behavior of PMMA plate numerically and investigate the influencing factors on cutting performance of PMMA plates. First of all, the simulation of explosion cutting process of PMMA plate is carried out by a non-linear explicit solver in LS-DYNA software using the fluid-solid coupling method. Jones-Wilkins-Lee (JWL) equation of state is used to simulate the relationship between the transient pressure and specific volume of explosives during explosion. The material model considering failure behaviors is used in the simulation. Additionally, the influence of explosive dosage as well as explosive type on the cutting performance of PMMA plate is investigated. Furthermore, the effect of PMMA geometry size on cutting performance is discussed. This study contributes to the knowledge for the design of PMMA structures which needs explosion cutting and the selection of explosive dosage and explosive type.


Author(s):  
Amirtaha Taebi ◽  
Fardin Khalili ◽  
Amirtaher Taebi

In orthopedics, the current internal fixations often use screws or intramedullary rods that obstruct bone material. In this paper, an internal implant was modelled as a hollow cylindrical sector made of a functionally graded material (FGM), which will hold bone in place with less obstruction of bone surface. Functionally graded implant was considered as an inhomogeneous composite structure, with continuously compositional variation from a ceramic at the outer diameter to a metal at the inner diameter. The buckling behavior of the implant was numerically analyzed using a finite element analysis software (ANSYS), and the structural stability of the implant was assessed. The buckling critical loads were calculated for different fixation lengths, cross sectional areas, and different sector angles. These critical loads were then compared with the critical loads of an FGM hollow cylinder with the same cross sectional area. Results showed that the critical load of the hollow cylindrical sector was ∼ 63%, ∼ 70%, and ∼ 73% of the hollow cylinder for different fixation lengths, cross sectional areas, and sector angles, respectively. Further investigations are warranted to study the relation between the composition profile and the implant stability, which can lead to batter internal fixation solutions.


2017 ◽  
Vol 268 ◽  
pp. 401-406
Author(s):  
Nurul Wahida Zainal Abidin Sham ◽  
Md Supar Rohani

The defect detection in composite material is important for its quality control where the hidden defect such as crack, corrosion, notch, holes, void and porosity can develop. In this paper, the ultrasonic bulk wave measurements of longitudinal and shear waves are used to identify defect in the multilayered composite material. This study employs pulse echo technique and utilized angle beam transducer. The composite material model investigated in this contribution are made of 24 mm and 12 mm thick Aluminium plates with a width of 100 mm and a length of 203 mm which are separated with an approximately 1 mm thick oil layer. A simulated defect is created in the composite test material by drilling a hole with 2.5 mm diameter and 3 mm depth on the bottom surface of the third layer material. Finding indicates that the defect is located at 53.39 mm from transducer and the percentage difference of the defect location compared to the calculation method is 7%. It indicates that the proposed method can be use to detect defect in multilayered composite material within 10% accuracy compared to the calculation method.


Sign in / Sign up

Export Citation Format

Share Document