Surface manipulation of elastic half-space to suppress Rayleigh wave propagation: A step towards boundary condition-based meta-surface design

2021 ◽  
Vol 150 (4) ◽  
pp. A146-A146
Author(s):  
Lalith Sai Srinivas Pillarisetti ◽  
Cliff Lissenden ◽  
Parisa Shokouhi
1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


1987 ◽  
Vol 54 (1) ◽  
pp. 121-126 ◽  
Author(s):  
R. Y. S. Pak

A method of potentials is presented for the derivation of the dynamic response of an elastic half-space to an arbitrary, time-harmonic, finite, buried source. The development includes a set of transformed stress-potential and displacement-potential relations which are apt to be useful in a variety of wave propagation problems. Specific results for an embedded source of uniform distributions are also included.


2000 ◽  
Vol 68 (2) ◽  
pp. 346-348 ◽  
Author(s):  
Hyun-Sil Kim ◽  
Jae-Seung Kim ◽  
Hyun-Ju Kang ◽  
Sang-Ryul Kim

Stress wave propagation in a coated elastic half-space due to water drop impact is studied by using the Cagniard-de Hoop method. The stresses have singularity at the Rayleigh wavefront whose location and singular behavior are determined from the pressure model and independent of the coating thickness, while reflected waves cause minor changes in amplitudes.


1988 ◽  
Vol 25 (2) ◽  
pp. 226-234
Author(s):  
L. J. Pascoe ◽  
F. Hron ◽  
P. F. Daley

The Alekseev–Mikhailenko method (AMM) is the name given to a series of algorithms that use one or more finite spatial transforms to reduce the dimensionality of a wave-propagation problem to that of one space dimension and time. This reduced equation is then solved using finite-difference techniques, and the space–time solution is recovered by applying inverse finite spatial transform(s). In this paper the elastodynamic wave equation that governs the coupled P–Sv motion in an isotropic, vertically inhomogeneous elastic half space is investigated using the AMM. Two types of impulsive body forces that may be used to excite the medium are examined, as is the problem of obtaining accurate transformed finite-difference analogues at the free surface. The second of these is accomplished by introducing the boundary conditions that the shear and normal stress must vanish here and by incorporating their transforms into the transformed elastodynamic equations. The stability criterion for the explicit finite-difference method is given cursory treatment, as detailed discussion of this aspect may be found in many texts that deal with the subject of finite differences.A coal-seam model (two thin, low-velocity layers embedded in a half space) illustrates the method. Both horizontal and vertical seismic traces are computed for this model and the results examined in relation to other seismic-modelling techniques.


Sign in / Sign up

Export Citation Format

Share Document