Comparison of Carbohydrate and Milk-Based Beverages on Muscle Damage and Glycogen Following Exercise

2001 ◽  
Vol 11 (4) ◽  
pp. 406-419 ◽  
Author(s):  
Janet R. Wojcik ◽  
Janet Walberg-Rankin ◽  
Lucille L. Smith ◽  
F.C. Gwazdauskas

This study examined effects of carbohydrate (CHO), milk-based carbohydrate-protein (CHO-PRO), or placebo (P) beverages on glycogen resynthesis, muscle damage, inflammation, and muscle function following eccentric resistance exercise. Untrained males performed a cycling exercise to reduce muscle glycogen 12 hours prior to performance of 100 eccentric quadriceps contractions at 120% of 1-RM (day 1) and drank CHO (n = 8), CHO-PRO (n = 9; 5 kcal/kg), or P (n = 9) immediately and 2 hours post-exercise. At 3 hours post-eccentric exercise, serum insulin was four times higher for CHO-PRO and CHO than P (p < .05). Serum creatine kinase (CK) increased for all groups in the 6 hours post-eccentric exercise (p < .01), with the increase tending to be lowest for CHO-PRO (p < .08) during this period. Glycogen was low post-exercise (33 ± 3.7 mmol/kg ww), increased 225% at 24 hours, and tripled by 72 hours, with no group differences. The eccentric exercise increased muscle protein breakdown as indicated by urinary 3-methylhistidine and increased IL-6 with no effect of beverage. Quadriceps isokinetic peak torque was depressed similarly for all groups by 24% 24 hours post-exercise and remained 21 % lower at 72 hours (p < .01). In summary, there were no influences of any post-exercise beverage on muscle glycogen replacement, inflammation, or muscle function.

2021 ◽  
pp. 655-664
Author(s):  
Seher Çağdaş Şenışık ◽  
Bedrettin Akova ◽  
Ufuk Şekir ◽  
Hakan Gür

There is a need to investigate the role of muscle architecture on muscle damage responses induced by exercise. The aim of this study was to determine the effect of muscle architecture and muscle length on eccentric exercise-induced muscle damage responses. Eccentric exercise-induced muscle damage was performed randomly to the elbow flexor (EF), knee extensor (KE), and knee flexor (KF) muscle groups with two week intervals in 12 sedentary male subjects. Before and after each eccentric exercise (immediately after, on the 1st, 2nd, 3rd, and 7th days) range of motion, delayed onset muscle soreness, creatine kinase activity, myoglobin concentration and isometric peak torque in short and long muscle positions were evaluated. Furthermore, muscle volume and pennation angle of each muscle group was evaluated before initiating the eccentric exercise protocol. Pennation angle and muscle volume was significantly higher and the workload per unit muscle volume was significantly lower in the KE muscles compared with the KF and EF muscles (p < 0.01). EF muscles showed significantly higher pain levels at post-exercise days 1 and 3 compared with the KE (p < 0.01-0.001) and KF (p < 0.01) muscles. The deficits in range of motion were higher in the EF muscles compared to the KE and KF muscles immediately after (day 0, p < 0.01), day 1 (p < 0.05-0.01), and day 3 (p < 0.05) evaluations. The EF muscles represented significantly greater increases in CK and Mb levels at day 1, 3, and 7 than the KE muscles (p < 0.05-0.01). The CK and Mb levels were also significantly higher in the KF muscles compared with the KE muscles (p < 0.05, p < 0.01 respectively). The KF and EF muscles represented higher isometric peak torque deficits in all the post-exercise evaluations at muscle short position (p < 0.05-0.001) compared with the KE muscle after eccentric exercise. Isometric peak torque deficits in muscle lengthened position was significantly higher in EF in all the post-exercise evaluations compared with the KE muscle (p < 0.05-0.01). According to the results of this study it can be concluded that muscle structural differences may be one of the responsible factors for the different muscle damage responses following eccentric exercise in various muscle groups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mikio Shoji ◽  
Ryoichi Ema ◽  
Kazunori Nosaka ◽  
Akihiro Kanda ◽  
Kosuke Hirata ◽  
...  

The present study examined if the magnitude of changes in indirect muscle damage markers could be predicted by maximal voluntary isometric contraction (MVIC) torque changes from immediately to 1 day after eccentric exercise. Twenty-eight young men performed 100 maximal isokinetic (60°/s) eccentric contractions of the knee extensors. MVIC torque, potentiated doublet torque, voluntary activation (VA) during MVIC, shear modulus of rectus femoris (RF), vastus medialis and lateralis, and muscle soreness of these muscles were measured before, immediately after, and 1–3 days post-exercise. Based on the recovery rate of the MVIC torque from immediately to 1-day post-exercise, the participants were placed to a recovery group that showed an increase in the MVIC torque (11.3–79.9%, n = 15) or a no-recovery group that showed no recovery (−71.9 to 0%, n = 13). No significant difference in MVIC torque decrease immediately post-exercise was found between the recovery (−33 ± 12%) and no-recovery (−32 ± 9%) groups. At 1–3 days, changes in MVIC torque (−40 to −26% vs. −22 to −12%), potentiated doublet torque (−37 to −22% vs. −20 to −9%), and proximal RF shear modulus (29–34% vs. 8–15%) were greater (p &lt; 0.05) for the no-recovery than recovery group. No significant group differences were found for muscle soreness. The recovery rate of MVIC torque was correlated (p &lt; 0.05) with the change in MVIC torque from baseline to 2 (r = 0.624) or 3 days post-exercise (r = 0.526), or peak change in potentiated doublet torque at 1–3 days post-exercise from baseline (r = 0.691), but not correlated with the changes in other dependent variables. These results suggest that the recovery rate of MVIC torque predicts changes in neuromuscular function but not muscle soreness and stiffness following eccentric exercise of the knee extensors.


1982 ◽  
Vol 52 (5) ◽  
pp. 1250-1256 ◽  
Author(s):  
O. L. Smith ◽  
G. Huszar ◽  
S. B. Davidson ◽  
E. Davis

To test the effects of acute cold on muscle amino acid and protein 1) rats were exposed to 4 degrees C for 24 h, functionally hepatectomized (eviscerated) and accumulation in the blood used to indicate changes in amino acid release from the tissues; 2) other rats were left intact, and urinary excretion of 3-methylhistidine (proportional to muscle protein breakdown) determined during cold exposure. In the eviscerated group, cold enhanced loss of total amino acids from the tissues (as alpha-amino nitrogen), but the loss (213 +/- 14.8% of basal in 2 h) was not due to excess alanine (180 +/- 8.5%). By comparison, in fasted rats total amino acid was 182 +/- 12.3, alanine 309 +/- 17.2%. Also, the cold-induced loss resembled the effects of streptozotocin diabetes and depended on a depression by cold of serum insulin (to 35.7 +/- 2.3 muU/ml). Therefore it was prevented when insulin was restored by infusion (40 mU . 100 g-1 . h-1) or by adrenodemedullation before cold exposure. Epinephrine (10 micrograms/100 g sc) depressed insulin in the latter and permitted amino acid release to recur. In intact rats, 3-methylhistidine excretion was unaffected by cold. The results suggest that although cold fails to stimulate alanine synthesis or protein breakdown, it inhibits insulin release sympathetically, thereby diminishing the amount of amino acid incorporated into muscle protein.


2015 ◽  
Vol 40 (12) ◽  
pp. 1294-1301 ◽  
Author(s):  
David W. Russ ◽  
Cara Acksel ◽  
Iva M. Boyd ◽  
John Maynard ◽  
Katherine W. McCorkle ◽  
...  

This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague–Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).


1999 ◽  
Vol 24 (3) ◽  
pp. 234-248 ◽  
Author(s):  
Priscilla M. Clarkson ◽  
Stephen P. Sayers

Muscle damage is caused by strenuous and unaccustomed exercise, especially exercise involving eccentric muscle contractions, where muscles lengthen as they exert force. Damage can be observed both directly at the cellular level and indirectly from changes in various indices of muscle function. Several mechanisms have been offered to explain the etiology of the damage/repair process, including mechanical factors such as tension and strain, disturbances in calcium homeostasis. the inflammatory response, and the synthesis of stress proteins (heat shock proteins). Changes in muscle function following eccentric exercise have been observed at the cellular level as an impairment in the amount and action of transport proteins for glucose and lactate/H+, and at the systems level as an increase in muscle stiffness and a prolonged loss in the muscle's ability to generate force. This paper will briefly review factors involved in the damage/repair process and alterations in muscle function following eccentric exercise. Key words: eccentric exercise, inflammation, stress proteins, muscle function


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Nosratollah Hedayatpour ◽  
Deborah Falla

Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.


2021 ◽  
Vol 30 (3) ◽  
pp. 327-335
Author(s):  
Choun-sub Kim ◽  
Maeng-kyu Kim

PURPOSE: This study aimed to examine the effects of eccentric exercise (ECC) on the indices of mechanical properties together with markers of exercise-induced muscle damage (EIMD) in different sites of the biceps brachii (BB) muscle.METHODS: ECC using an elbow joint was performed in 13 non-trained, college men. Global symptoms of EIMD were identified through changes in muscle soreness and serum creatine kinase (CK) activity, including muscle function following ECC. To evaluate regional EIMD, muscle swelling and tenderness as well as muscular echo intensity were measured at distal (4 cm above the elbow joint) and middle (30% of the distance from the antecubital crease to the acromion) sites within the BB muscle. A handheld myotonometer was used to estimate changes in mechanical properties, that is, oscillation frequency (F), dynamic stiffness (S), and relaxation time (R), of BB muscles after ECC.RESULTS: A significant difference in the major markers of EIMD, such as muscle soreness and serum CK activity, along with parameters of muscle function, was observed after ECC compared to baseline. Although all indirect markers of regional muscle damage demonstrated meaningful differences between before and after ECC, no statistically significant interaction between the distal and middle sites was observed in any of the markers. After ECC, both distal and middle sites showed significant changes in F, S, and R, but no statistical differences in changes in muscle mechanical properties were observed between localized muscle sites within BB muscles.CONCLUSIONS: Changes in mechanical properties, including regional muscle damage, seem to be uniformly influenced by different anatomical locations within the BB muscle, such as elbow flexors, following ECC.


2008 ◽  
Vol 42 (7) ◽  
pp. 585-591 ◽  
Author(s):  
D W Chapman ◽  
M J Newton ◽  
Z Zainuddin ◽  
P Sacco ◽  
K Nosaka

2017 ◽  
Vol 118 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Dimitrios Draganidis ◽  
Niki Chondrogianni ◽  
Athanasios Chatzinikolaou ◽  
Gerasimos Terzis ◽  
Leonidas G. Karagounis ◽  
...  

AbstractThe ubiquitin–proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.


2001 ◽  
Vol 11 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Douglas Paddon-Jones ◽  
Andrew Keech ◽  
David Jenkins

Purpose:We examined the effects of short-term β-hydroxy-β-methylbutyrate (HMB) supplementation on symptoms of muscle damage following an acute bout of eccentric exercise.Methods:Non-resistance trained subjects were randomly assigned to a HMB supplement group (HMB, 40mg/kg body weight/day, n = 8) or placebo group (CON, n = 9). Supplementation commenced 6 days prior to a bout of 24 maximal isokinetic eccentric contractions of the elbow flexors and continued throughout post-testing. Muscle soreness, upper arm girth, and torque measures were assessed pre-exercise, 15 min post-exercise, and 1,2,3, 4,7, and 10 days post-exercise.Results:No pre-test differences between HMB and CON groups were identified, and both performed a similar amount of eccentric work during the main eccentric exercise bout (p > .05). HMB supplementation had no effect on swelling, muscle soreness, or torque following the damaging eccentric exercise bout (p > .05).Conclusion:Compared to a placebo condition, short-term supplementation with 40mg/kg body weight/day of HMB had no beneficial effect on a range of symptoms associated with eccentric muscle damage. If HMB can produce an ergogenic response, a longer pre-exercise supplementation period may be necessary.


Sign in / Sign up

Export Citation Format

Share Document