The Influence of Heat Acclimation and Hypohydration on Post-Weight-Loss Exercise Performance

2020 ◽  
Vol 15 (2) ◽  
pp. 213-221
Author(s):  
Oliver R. Barley ◽  
Dale W. Chapman ◽  
Georgios Mavropalias ◽  
Chris R. Abbiss

Purpose: To examine the influence of fluid intake on heat acclimation and the subsequent effects on exercise performance following acute hypohydration. Methods: Participants were randomly assigned to 1 of 2 groups, either able to consume water ad libitum (n = 10; age 23 [3] y, height 1.81 [0.09] m, body mass 87 [13] kg; HAW) or not allowed fluid (n = 10; age 26 [5] y, height 1.76 [0.05] m, body mass 79 [10] kg; HANW) throughout 12 × 1.5-h passive heat-acclimation sessions. Experimental trials were completed on 2 occasions before (2 baseline trials) and 1 following the heat-acclimation sessions. These sessions involved 3 h of passive heating (45°C, 38% relative humidity) to induce hypohydration followed by 3 h of ad libitum food and fluid intake after which participants performed a repeat sled-push test to assess physical performance. Urine and blood samples were collected before, immediately, and 3 h following hypohydration to assess hydration status. Mood was also assessed at the same time points. Results: No meaningful differences in physiological or performance variables were observed between HANW and HAW at any time point. Using pooled data, mean sprint speed was significantly (P < .001) faster following heat acclimation (4.6 [0.7] s compared with 5.1 [0.8] s). Furthermore, heat acclimation appeared to improve mood following hypohydration. Conclusions: Results suggest that passive heat-acclimation protocols may be effective at improving short-duration repeat-effort performance following acute hypohydration.

2018 ◽  
Vol 13 (3) ◽  
pp. 374-381 ◽  
Author(s):  
Damir Zubac ◽  
Drazen Cular ◽  
Uros Marusic

Purpose:To determine the reliability and diagnostic accuracy of noninvasive urinary dehydration markers in field-based settings on a day-to-day basis in elite adolescent amateur boxers.Methods:Sixty-nine urine samples were collected daily from 23 athletes (17.3 ± 1.9 y) during their weight-stable phase and analyzed by field and laboratory measures of hydration status. Urine osmolality (UOSM), urine specific gravity (USG), total protein content (TPC), and body-mass stability were evaluated to determine fluid balance and hydration status. Overall macronutrient and water intake were determined using dietary records. According to their anthropometric characteristics, athletes were assigned into 2 groups: lightweight (LWB) and heavyweight (HWB) boxers.Results:Data presented on UOSMdemonstrated a uniform increment by 11.2% ± 12.8% (LWB) and 19.9% ± 22.7% (HWB) (P < .001) over the course of the study, even during the weight-stable phase (body mass, ICC = .99) and ad libitum fluid intake (42 ± 4 mL · kg−1 · d−1). The intraclass correlation coefficients (ICCs) ranged from .52 to .55 for USGand .38 to .52 for UOSM, further indicating inconsistency of the urinary dehydration markers. Poor correlations were found between USGand TPCmetabolites (r = .27,P = .211).Conclusions:Urinary dehydration markers (both USGand UOSM) exhibit high variability and seem to be unreliable diagnostic tools to track actual body-weight loss in real-life settings. The ad libitum fluid intake was apparently inadequate to match acute fluid loss during and after intense preparation. The applicability of a single-time-point hydration-status assessment concept may preclude accurate assessment of actual body-weight deficits in youth boxers.


Author(s):  
Yasuki Sekiguchi ◽  
Courteney L. Benjamin ◽  
Samantha O. Dion ◽  
Ciara N. Manning ◽  
Jeb F. Struder ◽  
...  

The purpose of this study was to examine the effect of heat acclimation (HA) on thirst levels, sweat rate, and percentage of body mass loss (%BML), and changes in fluid intake factors throughout HA induction. Twenty-eight male endurance athletes (mean ± SD; age, 35 ± 12 years; body mass, 73.0 ± 8.9 kg; maximal oxygen consumption, 57.4 ± 6.8 ml·kg−1·min−1) completed 60 min of exercise in a euhydrated state at 58.9 ± 2.3% velocity of maximal oxygen consumption in the heat (ambient temperature, 35.0 ± 1.3 °C; relative humidity, 48.0 ± 1.3%) prior to and following HA where thirst levels, sweat rate, and %BML were measured. Then, participants performed 5 days of HA while held at hyperthermia (38.50–39.75 °C) for 60 min with fluid provided ad libitum. Sweat volume, %BML, thirst levels, and fluid intake were measured for each session. Thirst levels were significantly lower following HA (pre, 4 ± 1; post, 3 ± 1, p < .001). Sweat rate (pre, 1.76 ± 0.42 L/hr; post, 2.00 ± 0.60 L/hr, p = .039) and %BML (pre, 2.66 ± 0.53%; post, 2.98 ± 0.83%, p = .049) were significantly greater following HA. During HA, thirst levels decreased (Day 1, 4 ± 1; Day 2, 3 ± 2; Day 3, 3 ± 2; Day 4, 3 ± 1; Day 5, 3 ± 1; p < .001). However, sweat volume (Day 1, 2.34 ± 0.67 L; Day 2, 2.49 ± 0.58 L; Day 3, 2.67 ± 0.63 L; Day 4, 2.74 ± 0.61 L; Day 5, 2.74 ± 0.91 L; p = .010) and fluid intake (Day 1, 1.20 ± 0.45 L; Day 2, 1.52 ± 0.58 L; Day 3, 1.69 ± 0.63 L; Day 4, 1.65 ± 0.58 L; Day 5, 1.74 ± 0.51 L; p < .001) increased. In conclusion, thirst levels were lower following HA even though sweat rate and %BML were higher. Thirst levels decreased while sweat volume and fluid intake increased during HA induction. Thus, HA should be one of the factors to consider when planning hydration strategies.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
David Benton ◽  
Alecia Cousins ◽  
Hayley Young

Abstract Objectives Reviews consistently find that a loss of about 2% of body mass was needed before either athletic or psychological functioning is disrupted. However, although it is usually assumed that the minor changes in hydration status, that occur during normal life, do not impact on performance, experimentally the topic has been virtually ignored. The impact of everyday variations in hydration was therefore examined. Methods 168 subjects were randomly allocated to drinking water, or not drinking, and in addition consume capsules containing either 300 mg of sodium chloride or a placebo. Subjects were monitored over a three-hour period, during which urine osmolality, loss of body mass and urine production were monitored. Repeatedly subjects reported their mood. Results Subjects came having consumed their normal diet, without any restriction on fluid intake: on average 0.5% body mass was lost during the study. The major finding was that the hydration status on arrival had a greater influence, than subsequent fluid intake and changes in osmolality during the study. With ratings of being agreeable rather than hostile, those with lower baseline osmolality who drank water had better mood than if baseline osmolality was high. As another example, the mood of those who did not drink water only declined during the study when baseline osmolality was high rather than low. With measures of being composed rather than anxious, and being confidence rather than unsure, those who had lower baseline osmolality had a better mood, irrespective of whether water was consumed. Thus, baseline osmolality had an impact greater than drink induced changes in osmolality. Traditionally the normal range of urine osmolality has been said to be 200–800 mOsmoles/kg, yet the critical point at which the response to fluid intake changed was 600 mOsmoles/kg: 61% had a baseline osmolality over 600 and 38% over 800 mOsmoles/kg. Conclusions Some individuals are in a state of dehydration that adversely influences mood; a state not reversed by acute fluid consumption. The pattern of consumption associated with mild-dehydration and its functional consequences needs to be established. Funding Sources There was no funding external other than provided by ** University.


2015 ◽  
Vol 50 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Susan W. Yeargin ◽  
Megan E. Finn ◽  
Lindsey E. Eberman ◽  
Matthew J. Gage ◽  
Brendon P. McDermott ◽  
...  

Context: During team athletic events, athletic trainers commonly provide fluids with water bottles. When a limited number of water bottles exist, various techniques are used to deliver fluids. Objective: To determine whether fluid delivered via water-bottle administration influenced fluid consumption and hydration status. Design: Crossover study. Setting: Outdoor field (22.2°C ± 3.5°C). Patients or Other Participants: Nineteen participants (14 men, 5 women, age = 30 ± 10 years, height = 176 ± 8 cm, mass = 72.5 ± 10 kg) were recruited from the university and local running clubs. Intervention(s): The independent variable was fluid delivery with 3 levels: self-administration with mouth-to-bottle direct contact (SA-DC), self-administration with no contact between mouth and bottle (SA-NC), and external administration with no contact between the mouth and the bottle (EA-NC). Participants warmed up for 10 minutes before completing 5 exercise stations, after which an ad libitum fluid break was given, for a total of 6 breaks. Main Outcome Measure(s): We measured the fluid variables of total volume consumed, total number of squirts, and average volume per squirt. Hydration status via urine osmolality and body-mass loss, and perceptual variables for thirst and fullness were recorded. We calculated repeated-measures analyses of variance to assess hydration status, fluid variables, and perceptual measures to analyze conditions across time. Results: The total volume consumed for EA-NC was lower than for SA-DC (P = .001) and SA-NC (P = .001). The total number of squirts for SA-DC was lower than for SA-NC (P = .009). The average volume per squirt for EA-NC was lower than for SA-DC (P = .020) and SA-NC (P = .009). Participants arrived (601.0 ± 21.3 mOsm/L) and remained (622.3 ± 38.3 mOsm/L) hydrated, with no difference between conditions (P = .544); however, the EA-NC condition lost more body mass than did the SA-DC condition (P = .001). There was no main effect for condition on thirst (P = .147) or fullness (P = .475). Conclusions: External administration of fluid decreased total volume consumed via a decreased average volume per squirt. The SA-DC method requires fewer squirts within a specific time frame. Fluid breaks every 15 minutes resulted in maintenance of euhydration; however, loss of body mass was influenced by fluid administration. Athletic trainers should avoid external administration to promote positive hydration behaviors. When fluid is self-administered, individual bottles may be the best clinical practice because more volume can be consumed per squirt.


2014 ◽  
Vol 49 (5) ◽  
pp. 624-631 ◽  
Author(s):  
Lawrence E. Armstrong ◽  
Evan C. Johnson ◽  
Laura J. Kunces ◽  
Matthew S. Ganio ◽  
Daniel A. Judelson ◽  
...  

Context: The sensation of thirst is different from the complex behavior of drinking ad libitum. Rehydration recommendations to athletes differ, depending on the source, yet no previous researchers have systematically compared drinking to thirst (DTT) versus ad libitum drinking behavior (DAL). Objective: To compare 2 groups of trained cyclists (DTT and DAL) who had similar physical characteristics and training programs (P &gt; .05). The DTT group (n = 12, age = 47 ± 7 years) drank only when thirsty, whereas the DAL group (n = 12, age = 44 ± 7 years) consumed fluid ad libitum (ie, whenever and in whatever volume desired). Design: Cohort study. Setting: Road cycling (164 km) in the heat (36.1°C ± 6.5°C). Patients or Other Participants: Ultraendurance cyclists (4 women, 20 men). Intervention(s): We recorded measurements 1 day before the event, on event day before the start, at 3 roadside aid stations, at the finish line, and 1 day after the event. Main Outcome Measure(s): Body mass, urinary hydration indices, and food and fluids consumed. Results: No between-groups differences were seen on event day for total exercise time (DTT = 6.69 ± 0.89 hours, DAL = 6.66 ± 0.77 hours), urinary indices (specific gravity, color), body mass change (DTT = −2.22% ± 1.73%, DAL = −2.29% ± 1.62%), fluid intake (DTT = 5.63 ± 2.59 L/6.7 h, DAL = 6.04 ± 2.37 L/6.7 h), dietary energy intake, macronutrient intake, ratings of thirst (DTT start = 2 ± 1, DTT finish = 6 ± 1, DAL start = 2 ± 1, DAL finish = 6 ± 1), pain, perceived exertion, or thermal sensation. Total fluid intake on recovery day +1 was the primary significant difference (DAL = 5.13 ± 1.87 L/24 h, DTT = 3.13 ± 1.53 L/24 h, t18 = 2.59, P = .02). Conclusions: Observations on event day indicated that drinking to thirst and drinking ad libitum resulted in similar physiologic and perceptual outcomes. This suggests that specific instructions to “drink to thirst” were unnecessary. Indeed, if athletes drink ad libitum, they can focus on training and competition rather than being distracted by ongoing evaluation of thirst sensations.


2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


2010 ◽  
Vol 35 (6) ◽  
pp. 834-841 ◽  
Author(s):  
Boguslaw Wilk ◽  
Brian W. Timmons ◽  
Oded Bar-Or

We determined whether beverage flavoring and composition would stimulate voluntary drink intake, prevent dehydration, and maintain exercise performance in heat-acclimated adolescent males running in the heat. Eight adolescent (age, 13.7 ± 1.1 years) runners (peak oxygen uptake, 59.5 ± 4.0 mL·kg–1·min–1) underwent at least four 80-min exercise heat-acclimation sessions before completing 3 experimental sessions. All sessions were performed at 30 °C and 60%–65% relative humidity. Each experimental session consisted of five 15-min treadmill runs at a speed eliciting 65% peak oxygen uptake, with a 5 min rest prior to each run. Ten minutes after the final run, a time to exhaustion test was performed at a speed eliciting 90% peak oxygen uptake. Counterbalanced experimental sessions were identical, except for fluid intake, which consisted of tap water (W), flavored water (FW), and FW with 6% carbohydrate and 18 mmol·L–1 NaCl (CNa) consumed ad libitum. Fluid intake and body weight were monitored to calculate dehydration. Voluntary fluid intake was similar to fluid losses in W (1032 ± 130 vs. 1340 ± 246 g), FW (1086 ± 86 vs. 1451 ± 253 g), and CNa (1259 ± 119 vs. 1358 ± 234 g). As a result, significant dehydration was avoided in all trials (–0.45% ± 0.68% body weight in W, –0.66% ± 0.50% body weight in FW, and –0.13% ± 0.71% body weight in CNa). Core temperature increased by ~1 °C during exercise, but was not different between trials. Time to exhaustion was not different between trials and averaged 8.8 ± 1.7 min. Under exercise conditions more closely reflecting real-life situations, heat-acclimatized adolescent male runners can appropriately gauge fluid intake regardless of the type of beverage made available, resulting in consistency in exercise performance.


2014 ◽  
Vol 24 (5) ◽  
pp. 497-506 ◽  
Author(s):  
Bjoern Geesmann ◽  
Joachim Mester ◽  
Karsten Koehler

Athletes competing in ultra-endurance events are advised to meet energy requirements, to supply appropriate amounts of carbohydrates (CHO), and to be adequately hydrated before and during exercise. In practice, these recommendations may not be followed because of satiety, gastrointestinal discomfort, and fatigue. The purpose of the study was to assess energy balance, macronutrient intake and hydration status before and during a 1,230-km bike marathon. A group of 14 well-trained participants (VO2max: 63.2 ± 3.3 ml/kg/min) completed the marathon after 42:47 hr. Ad libitum food and fluid intake were monitored throughout the event. Energy expenditure (EE) was derived from power output and urine and blood markers were collected before the start, after 310, 618, and 921 km, after the finish, and 12 hr after the finish. Energy intake (EI; 19,749 ± 4,502 kcal) was lower than EE (25,303 ± 2,436 kcal) in 12 of 14 athletes. EI and CHO intake (average: 57.1 ± 17.7 g/hr) decreased significantly after km 618 (p < .05). Participants ingested on average 392 ± 85 ml/hr of fluid, but fluid intake decreased after km 618 (p < .05). Hydration appeared suboptimal before the start (urine specific gravity: 1.022 ± 0.010 g/ml) but did not change significantly throughout the event. The results show that participants failed to maintain in energy balance and that CHO and fluid intake dropped below recommended values during the second half of the bike marathon. Individual strategies to overcome satiety and fatigue may be necessary to improve eating and drinking behavior during prolonged ultra-endurance exercise.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2689 ◽  
Author(s):  
William M. Adams ◽  
Lesley W. Vandermark ◽  
Luke N. Belval ◽  
Douglas J. Casa

The purpose of this study was to examine the perception of thirst as a marker of hydration status following prolonged exercise in the heat. Twelve men (mean ± SD; age, 23 ± 4 y; body mass, 81.4 ± 9.9 kg; height, 182 ± 9 cm; body fat, 14.3% ± 4.7%) completed two 180 min bouts of exercise on a motorized treadmill in a hot environment (35.2 ± 0.6 °C; RH, 30.0 ± 5.4%), followed by a 60 min recovery period. Participants completed a euhydrated (EUH) and hypohydrated (HYPO) trial. During recovery, participants were randomly assigned to either fluid replacement (EUHFL and HYPOFL; 10 min ad libitum consumption) or no fluid replacement (EUHNF and HYPONF). Thirst was measured using both a nine-point scale and separate visual analog scales. The percent of body mass loss (%BML) was significantly greater immediately post exercise in HYPO (HYPOFL, 3.0% ± 1.2%; HYPONF, 2.6% ± 0.6%) compared to EUH (EUHFL, 0.2% ± 0.7%; EUHNF, 0.6% ± 0.5%) trials (p < 0.001). Following recovery, there were no differences in %BML between HYPOFL and HYPONF (p > 0.05) or between EUHFL and EUHNF (p > 0.05). Beginning at minute 5 during the recovery period, thirst perception was significantly greater in HYPONF than EUHFL, EUHNF, and HYPOFL (p < 0.05). A 10 min, ad libitum consumption of fluid post exercise when hypohydrated (%BML > 2%), negated differences in perception of thirst between euhydrated and hypohydrated trials. These results represent a limitation in the utility of thirst in guiding hydration practices.


Sign in / Sign up

Export Citation Format

Share Document