Prediction of Race Performance of Elite Cross-Country Skiers by Lean Mass

2014 ◽  
Vol 9 (6) ◽  
pp. 1040-1045 ◽  
Author(s):  
Magnus Carlsson ◽  
Tomas Carlsson ◽  
Daniel Hammarström ◽  
Christer Malm ◽  
Michail Tonkonogi

Purpose:To investigate the relationship between race performance and lean mass (LM) variables, as well as to examine sex differences in body composition in elite-standard cross-country skiers.Methods:Thirty-four elite cross-country skiers (18 men and 16 women) underwent a dual-emission X-ray-absorptiometry body-composition test to determine LM, fat mass, and bone mineral content. For both sexes, performance data were collected from a sprint prologue and a distance race.Results:The absolute expression of LM variables (whole-body [LMWB], upper body [LMUB], and lower body [LMLB]) was significantly correlated with finishing time in the sprint prologue independent of sex. Distance-race performance was significantly related to LMWB, LMUB, and LMLB in women; however, no correlation was found in men. Men had a significantly higher LM and lower fat mass, independent of expression (absolute or relative), for the whole body, arms, trunk, and legs, except for the absolute fat mass in the trunk.Conclusions:The absolute expressions of LMWB, LMUB, and LMLB were significant predictors of sprint-prologue performance in both sexes, as well as of distance-race performance in women only. Compared with women, male skiers have a higher LM in the body segments that are major contributors to propelling forces. These results suggest that muscle mass in the lower and upper body is equally important for race performance; thus, more focus of elite skiers’ training should be directed to increasing whole-body muscle mass to improve their competitive performance capability.

2019 ◽  
Vol 25 (6) ◽  
pp. 485-489
Author(s):  
Luciana Duarte Pimenta ◽  
Danilo Alexandre Massini ◽  
Daniel Dos Santos ◽  
Leandro Oliveira Da Cruz Siqueira ◽  
Andrei Sancassani ◽  
...  

ABSTRACT Introduction There is limited consensus regarding the recommendation of the most effective form of exercise for bone integrity, despite the fact that weight training exercise promotes an increase in muscle mass and strength as recurrent responses. However, strength variations in women do not depend on muscle mass development as they do in men, but strength enhancement has shown the potential to alter bone mineral content (BMC) for both sexes. Objective This study analyzed the potential of muscle strength, as well as that of whole-body and regional body composition, to associate femoral BMC in young women. Methods Fifteen female college students (aged 24.9 ± 7.2 years) were assessed for regional and whole-body composition using dual-energy X-ray absorptiometry (DXA). Maximum muscle strength was assessed by the one-repetition maximum (1RM) test in the following exercises: bench press (BP), lat pulldown (LP), knee flexion (KF), knee extension (KE) and 45° leg press (45LP). Linear regression analyzed BMC relationships with regional composition and 1RM values. Dispersion and error measures (R 2 aj and SEE), were tested, defining p ≤0.05. Results Among body composition variables, only total lean body mass was associated with femoral BMC values (R 2 aj = 0.37, SEE = 21.3 g). Regarding strength values, 1RM presented determination potential on femoral BMC in the CE exercise (R 2 aj = 0.46, SEE = 21.3 g). Conclusions Muscle strength aptitude in exercises for femoral regions is relevant to the femoral mineralization status, having associative potential that is similar to and independent of whole-body lean mass. Therefore, training routines to increase muscle strength in the femoral region are recommended. In addition, increasing muscle strength in different parts of the body may augment bone remodeling stimulus, since it can effectively alter total whole-body lean mass. Level of Evidence II; Development of diagnostic criteria in consecutive patients (with universally applied reference ‘‘gold’’ standard).


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Maria Nikolova ◽  
Alexander Penkov

AbstractIntroduction:Obesity has been linked with vitamin D deficiency in a number of cross-sectional studies, reviews and meta-analyses. To assess the correlations of plasma 25(OH) vitamin D levels with indices of body composition examined by DXA with an emphasis on lean and bone mass as well as on indices such as android/gynoid fat, appendicular lean mass (ALM) and appendicular lean mass index (ALMI), fat-mass indexes (FMI), fat-free mass indexes (FFMI) and the ALM-to-BMI index.Materials and Methods:62 adult subjects consented to participate – 27 men (43.5 %) and 35 women (56.5 %). Their mean age was 45.3 ± 9.5 years. Fan-beam dual-energy X-ray (DXA) body composition analysis was performed on a Lunar Prodigy Pro bone densitometer with software version 12.30. Vitamin D was measured by electro-hemi-luminescent detection as 25(OH)D Total (ECLIA, Elecsys 2010 analyzer, Roche Diagnostics). Statistical analyses were done using the SPSS 23.0 statistical package.Results:The serum 25(OH)D level was correlated significantly only to the whole body bone mineral content, the appendicular lean mass index (ALMI) and the ALM-to-BMI index, underlining a predominant role for lean and fat-free mass. Vitamin D showed a very weak correlation to % Body Fat and the Fat Mass Index (FMI) in men only. Moreover, the multiple regression equation including the associated parameters could explain only 7 % of the variation in the serum 25(OH)D levels.Discussion:Our conclusion was, that there are differences in the associations of the vitamin D levels with the different body composition indices, but these associations are generally very weak and therefore – negligible.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Maryam Razaghi ◽  
Catherine Vanstone ◽  
Olusola Sotunde ◽  
Nathalie Gharibeh ◽  
Sarah Kimmins ◽  
...  

Abstract Objectives Vitamin D status is positively associated with lean mass phenotype in healthy infants born with sufficient vitamin D stores. The objective is to test whether rapid correction of low neonatal vitamin D status improves body composition (lean mass and fat mass) at 6 mo of age. Methods In a double-blinded randomized parallel group controlled trial (NCT02563015), healthy term neonates of appropriate weight for gestational age were recruited from Montreal. Capillary blood samples were collected 24–36 h post natally for measurement of serum 25-hydroxyvitamin D [25(OH)D] (Liaison, Diasorin Inc.). Infants with serum 25(OH)D < 50 nmol/L (n = 87) were randomized to receive 400 or 1000 IU/d until 6 mo of age. Those with 25(OH)D ≥ 50 nmol/L (n = 31) were recruited as a reference group, and received 400 IU/d. Anthropometry, lean mass and fat mass (dual-energy x-ray absorptiometry) were measured at baseline, 3 and 6 mo. Skin color was measured using a spectrophotometer. Differences between treatments and reference groups were tested using mixed model and repeated measures ANOVA accounting for the effects of sex, season of birth, skin color and gestational age (GA). Results Neonates (67 males, 51 females) were 39.6 ± 1wk GA and 3387 ± 371 g at birth. There were no differences between groups in lean mass or fat mass at baseline; nor in weight or length at any time-point. Combined treatment groups, had lower serum 25(OH)D concentrations at birth compared to the reference group (33 ± 11 vs. 69 ± 13 nmol/L, P < 0.0001). However, at 6 mo of age, serum 25(OH)D concentration was higher in the group receiving 1000 IU/d (n = 34), in comparison to the group receiving 400 IU/d (n = 29), and the reference (n = 19) group (125.0 ± 34.0, 82.2 ± 21.5 vs. reference 85.4 ± 32.1 nmol/L, P < 0.0001). Whole body lean mass was significantly different among groups (5071.3 ± 750.0, 4944.1 ± 616.3 and 5166.0 ± 645.4 g, respectively, P = 0.03), with infants in the treatment group provided a 400 IU/d supplement having a lower lean mass by 6 mo of age compared to the 1000 IU/d group. Fat mass was not different among groups following post-hoc testing (2967.0 ± 929.0 and 2962.0 ± 952.0, 2742.0 ± 754.0 g, P = 0.16). Conclusions Higher dosage supplementation of vitamin D rapidly improved vitamin D status and supported a leaner body phenotype in infancy. Funding Sources Canadian Institutes of Health Research.


2019 ◽  
Vol 25 (3) ◽  
pp. 245-251
Author(s):  
Luciana Duarte Pimenta ◽  
Danilo Alexandre Massini ◽  
Daniel dos Santos ◽  
Camila Midori Takemoto Vasconcelos ◽  
Astor Reis Simionato ◽  
...  

ABSTRACT Although muscle strength, lean mass and bone mineral content/density (BMC/BMD) are consistently reported as major outcomes of resistance training (RT), there is still no agreement on the RT regimen that is capable of achieving this result in men and women of different ages. This study describes the effects of RT on muscle strength, lean mass and bone mineralization, highlighting the relationships between them and analyzing the effectiveness of the RT protocol. Information searches were conducted in open access online academic libraries, using the BMC/BMD indices combined with muscle strength, body composition, and resistance exercises. The results showed changes in BMC/BMD in 72% of the studies published in the last decade. Among these, 77% recommended loads ≥ 80% 1-RM, 61% involved older individuals (> 60 years) and 61% had planning protocols of between 3 and 5 months (~12-20 weeks). The results also highlight muscle strength as a promising index of variations in BMC/BMD, with a moderate to high level of association (r2>0.5), which are specific for men and women in relation to the body region with best responsiveness. Among the studies published in last decade, about 61% had protocols involving only RT, and of these, 82% observed combined changes in BMC/BMD, body composition and muscle strength. This review therefore concludes that RT is important for improving muscle strength, increasing lean mass (whole-body and regional) and preventing risk factors that could impair the mineral integrity of the bone tissue, in individuals of all ages and sexes. Level of Evidence I; Systematic review of Level I RCTs (and study results were homogenous).


Author(s):  
Jorge Pérez-Gómez ◽  
José Carmelo Adsuar ◽  
Miguel Ángel García-Gordillo ◽  
Pilar Muñoz ◽  
Lidio Romo ◽  
...  

(1) Background: Regucalcin or senescence marker protein 30 (SMP30) is a Ca2+ binding protein discovered in 1978 with multiple functions reported in the literature. However, the impact of exercise training on SMP30 in humans has not been analyzed. Aging is associated with many detrimental physiological changes that affect body composition, functional capacity, and balance. The present study aims to investigate the effects of whole body vibration (WBV) in postmenopausal women. (2) Methods: A total of 13 women (aged 54.3 ± 3.4 years) participated in the study. SMP30, body composition (fat mass, lean mass, and bone mass) and physical fitness (balance, time up and go (TUG) and 6-min walk test (6MWT)) were measured before and after the 12 weeks of WBV training. (3) Results: The WBV training program elicited a significant increase in SPM30 measured in plasma (27.7%, p = 0.004) and also in 6MWT (12.5%, p < 0.001). The WBV training also significantly reduced SPM30 measured in platelets (38.7%, p = 0.014), TUG (23.1%, p < 0.001) and total body fat mass (4.4%, p = 0.02). (4) Conclusions: There were no significant differences in balance, lean mass or bone mass. The present study suggests that 12 weeks of WBV has the potential to improve SPM30, fat mass, TUG and 6MWT in postmenopausal women.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Fábio Lera Orsatti ◽  
Eliana Aguiar Petri Nahas ◽  
Jorge Nahas-Neto ◽  
Nailza Maesta ◽  
Cláudio Lera Orsatti ◽  
...  

Objective. To investigate the independent and additive effects of resistance training (RT) and soy isoflavone (ISO) on body composition in postmenopausal women (PW).Method. This study used a placebo-controlled, double-blind (soy), randomized (ISO versus placebo) × (RT versus No RT) design. A total of 80 PW, aged 45–70 years, were randomly (71 completed 9-months intervention): RT + ISO (n=15), No RT + ISO (n=20), RT + placebo (n=18), and No RT + placebo (n=18). ISO received 100 mg a day of isoflavone; and to RT attended supervised resistance training sessions. At baseline and 9-months, fat and muscle mass were estimated by DXA. ANOVA and testtwere used.Results. RT groups showed significantly increased muscle strength (35.2%) and muscle mass (1.4%). Exercising attenuated gains in fat trunk and % body fat (P<.05). Significant decreases in muscle mass (−1.8%) and increases in fat mass of the whole-body (1.6%) and trunk (9.7%) was found in no-RT groups (P<.05). In ISO groups, there were no differences in body composition and muscle strength. ISO and RT had no additive effects.Conclusion. In PW: RT improved muscle mass and strength and attenuated gain of fat mass; ISO did not alter body composition and muscle strength; there were no additive effects of RT and ISO.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bum Ju Lee ◽  
Mi Hong Yim

AbstractWhether anthropometric or body composition indices are better indicators of metabolic risk remains unclear. The objectives of this study were to compare the association of metabolic risk factors with anthropometric and body composition indices and to identify the better indicators for risk factors in a large-scale Korean population. In this cross-sectional study, the associations of body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR) as anthropometric indices and trunk fat mass (TFM), percent trunk fat mass (%TFM), whole-body total fat mass (WBTFM), and percent whole-body total fat mass (%WBTFM) as body composition indices with metabolic risk factors were compared by complex-samples multiple logistic regression models based on complex-sample survey data. In men, WHtR, BMI, and TFM were similarly associated with hypertension. Diabetes, hyperlipidemia, and hypo-high-density lipoprotein (HDL) cholesterolemia tended to be more strongly associated with WHtR and WC than body composition indices. Hypertriglyceridemia and hypercholesterolemia were more strongly associated with WHtR and %TFM than other indices. In women, hypertension tended to be more strongly associated with WHtR than other indices. TFM, %TFM, and WHtR were similarly associated with hyperlipidemia. Diabetes and hypo-HDL cholesterolemia were more strongly associated with WHtR and WC than body composition indices. Hypertriglyceridemia and hypercholesterolemia were more strongly associated with WHtR and %TFM than other indices. Among six metabolic risk factors, the validity and utility of the anthropometric indices in identifying risk factors tended to be similar to or better than those of the body composition indices, except for hypertension and hypercholesterolemia in men and hyperlipidemia and hypercholesterolemia in women.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wolfgang Kemmler ◽  
Mahdieh Shojaa ◽  
James Steele ◽  
Joshua Berger ◽  
Michael Fröhlich ◽  
...  

This systematic review and meta-analysis set out to determine the efficacy on whole-body electromyostimulation (WB-EMS) on body composition and strength parameters in non-athletic cohorts. A systematic review of the literature according to the PRISMA statement included (a) controlled trials, (b) WB-EMS trials with at least one exercise and one control group, (c) WB-EMS as primary physical intervention, (d) WB-EMS with at least six electrodes covering most muscle groups, (e) non-athletic cohorts. We searched eight electronic databases up to June 30, 2020, without language restrictions. Standardized mean differences (SMD) for muscle mass parameters, total body fat mass, maximum leg extension, and trunk extension strength were defined as outcome measures. In summary, 16 studies with 19 individual WB-EMS groups representing 897 participants were included. Studies vary considerably with respect to age, BMI, and physical conditions. Impulse protocols of the studies were roughly comparable, but training frequency (1–5 sessions/week) and intervention length (6–54 weeks) differed between the studies. SMD average was 1.23 (95%-CI: 0.71–1.76) for muscle mass, 0.98 (0.74–1.22) for maximum leg, and 1.08 (0.78–1.39) for maximum trunk extension strength changes (all p &lt; 0.001). SMD for body fat changes (−0.40, [−0.98 to 0.17]), however, did not reach significance. I2 and Q-statistics revealed substantial heterogeneity of muscle and fat mass changes between the trials. However, rank and regression tests did not indicate positive evidence for small-study bias and funnel plot asymmetries. This work provided further evidence for significant, large-sized effects of WB-EMS on muscle mass and strength parameters, but not on body fat mass.Clinical Trial Registration:ClinicalTrials.gov, PROSPERO; ID: CRD42020183059.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1568-1568
Author(s):  
Pritesh S Karia ◽  
Corinne Joshu ◽  
Kala Visvanathan

1568 Background: Prior studies suggest that bilateral oophorectomy (BO), a common cancer prevention strategy, may be associated with adiposity. However, the impact of BO on lean mass, a potential marker of healthy aging, and whole-body composition is not known. Declines in lean mass have been linked to physical disability and mortality. We examined the association between BO and total and regional distribution of fat and lean mass in a cross-sectional study. Methods: The study population included women 35-70 years who underwent dual-energy x-ray absorptiometry (DXA) scans at enrollment as part of the National Health and Nutrition Examination Survey 1999-2006 (N = 3,764). Multinomial logistic regression models were used to examine the relationship between prior BO and tertiles of fat and lean mass. Models were adjusted for age, race, education, BMI at age 25, physical activity, smoking, alcohol use, parity, oral contraceptive use and hormone replacement therapy use. Results: Women with prior BO < 45 years (n = 346) had 2.9-times higher odds than women without BO (n = 3,212) of being in the highest compared to the lowest tertile of total fat mass (OR, 2.91; 95% CI, 1.93-4.38) and 2.7-times higher odds of being in the lowest compared to the highest tertile of total lean mass (OR, 2.67; 95% CI, 1.81-3.95). Results were similar when stratified by age at enrollment ( < 45, 45-54, and ≥55). Similarly, among women with normal BMI at enrollment, those with prior BO < 45 years (n = 74) had higher odds of being in the highest tertile of total fat mass (OR, 9.88, 95% CI, 2.21-44.00) and the lowest tertile of total lean mass (OR, 10.09; 95% CI, 2.72-37.46). These differences in body composition were most pronounced in the trunk region. No difference was observed in women with BO ≥45 years compared to women without BO. Conclusions: Women with a history of early BO experience significant changes in body composition, including increased fat mass and decreased lean mass, even while maintaining a normal BMI. If validated in future prospective studies, our results suggest that a comprehensive evaluation of body composition may be warranted in young women who undergo BO.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
P Argüello ◽  
A Gálvez ◽  
L Castro ◽  
I Sánchez ◽  
P Melo

Abstract Background Body composition is a parameter that is evaluated to predict the nutritional status of the population. This is assessed by bioelectric impedance analysis, which reports BMI, fat percentage, skeletal muscle mass, phase angle (AP), among others. The latter, in recent years has become important because it is a direct electrical measurement in the body, used for the clinical prognosis of diseases such as cancer, anorexy nervous, sarcopenia and chronic liver disease. AP is an index of vitality and integrality of the cell membrane and an indicator of muscle strength and endurance; likewise, it is inversely related to BMI, age and gender, normal values in healthy populations range between 5.5° to 9°, it is believed that physical activity and sport can also modify AP values. Therefore, the purpose of the study was to determine the relationship between body composition and AP in soccer players in Bogotá, Colombia. Methods Quantitative, cross-sectional, correlational approach. The sample was 84 soccer players (age: 18.67 + 2.9 years; height: 1.73 + 0.07 m; weight: 66.58 + 9.94 Kg), who were assessed using the Bioimpedance method through InBody 770®. Results The averages obtained were: AP 6.46°+0.58; muscle mass 32.25 + 5.06 Kg, percentage of fat mass 15.90 + 3.97. There was a direct relationship between AP, skeletal muscle mass and lean mass in the right, left arm, trunk and right leg (p &lt; 0.01), while with the percentage of body fat mass of the right and left arm the relationship was inverse. Conclusions Body composition with high values of musculoskeletal mass and AP favor the functionality and development of strength, which in turn are protective factors for the presence of diseases such as sarcopenia. Key messages The Phase Angle is constituted as an easily accessible marker of nutritional health and morphofunctional profile in athletes. The Phase Angle and body composition as determinants of the profile in athletes.


Sign in / Sign up

Export Citation Format

Share Document