Comparison of Between-Training-Sessions Recovery Strategies for World-Class BMX Pilots

2015 ◽  
Vol 10 (2) ◽  
pp. 219-223 ◽  
Author(s):  
Laurie-Anne Marquet ◽  
Christophe Hausswirth ◽  
Arnaud Hays ◽  
Fabrice Vettoretti ◽  
Jeanick Brisswalter

Purpose:To assess the impact of between-training-sessions recovery strategies (passive [PAS], active [ACT], cold-water immersion [CWI], and ingestion of a recovery drink [NUTR]) on maximal cycling performance, perceptions of delayed-onset muscle soreness (DOMS), and fatigue in world-class BMX riders.Methods:Eleven elite BMX athletes, members of the French national team (top country in the 2011 international ranking, 4 medals at the 2012 World Championships, top European country), participated in the study, which involved standardized training periods. Athletes performed 3 maximal-sprint power tests: the first day of the week before the training session and before and after training on the third day of the week (D3). The recovery strategy was randomly assigned to each participant on day 2 immediately after the last training period of the day. Perceptions of DOMS and general fatigue were recorded on D3.Results:After training on D3, the decrease in maximal-sprint power (Pmax) was significantly greater for PAS than with CWI (P = .02) and NUTR (P = .018). Similar results were found with ACT (vs CWI P = .044, and vs NUTR P = .042). Self-reported DOMS and fatigue were significantly greater after PAS than after other strategies.Conclusions:For elite BMX riders, between training days, nutritional and/or CWI recovery strategies appear to be best for reducing muscle fatigue and increasing the capacity to withstand the training schedule.

2017 ◽  
Vol 12 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christos K. Argus ◽  
James R. Broatch ◽  
Aaron C. Petersen ◽  
Remco Polman ◽  
David J. Bishop ◽  
...  

Context:An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.Purpose:To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.Methods:Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.Results:Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.Conclusions:CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1841 ◽  
Author(s):  
Kane J. Hayter ◽  
Kenji Doma ◽  
Moritz Schumann ◽  
Glen B. Deakin

This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.


2009 ◽  
Vol 65 (1) ◽  
Author(s):  
D.V. Van Wyk ◽  
M.I. Lambert

Objective: The main aim of this study was to determine strategies used toaccelerate recovery of elite rugby players after training and matches, asused by medical support staff of rugby teams in South A frica. A  secondaryaim was to focus on specifics of implementing ice/cold water immersion asrecovery strategy. Design: A  Questionnaire-based cross sectional descriptive survey was used.Setting and Participants: Most (n=58) of the medical support staff ofrugby teams (doctors, physiotherapists, biokineticists and fitness trainers)who attended the inaugural Rugby Medical A ssociation conference linked to the South A frican Sports MedicineA ssociation Conference in Pretoria (14-16th November, 2007) participated in the study. Results: Recovery strategies were utilized mostly after matches. Stretching and ice/cold water immersion were utilized the most (83%). More biokineticists and fitness trainers advocated the usage of stretching than their counter-parts (medical doctors and physiotherapists). Ice/Cold water immersion and A ctive Recovery were the top two ratedstrategies. A  summary of the details around implementation of ice/cold water therapy is shown (mean) as utilized bythe subjects: (i) The time to immersion after matches was 12±9 min; (ii) The total duration of one immersion sessionwas 6±6 min; (iii) 3 immersion sessions per average training week was utilized by subjects; (iv) The average water temperature was 10±3 ºC.; (v) Ice cubes were used most frequently to cool water for immersion sessions, and(vi) plastic drums were mostly used as the container for water. Conclusion: In this survey the representative group of support staff provided insight to which strategies are utilizedin South A frican elite rugby teams to accelerate recovery of players after training and/or matches.


2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


2013 ◽  
Vol 115 (9) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kevin De Pauw ◽  
Bart Roelands ◽  
Uroš Marušič ◽  
Helio Fernandez Tellez ◽  
Kristel Knaepen ◽  
...  

The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.


2010 ◽  
Vol 24 (12) ◽  
pp. 3313-3317 ◽  
Author(s):  
Patrick G Dixon ◽  
William J Kraemer ◽  
Jeff S Volek ◽  
Robert L Howard ◽  
Ana L Gomez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document