Paralympic Sprint Performance Between 1992 and 2012

2015 ◽  
Vol 10 (8) ◽  
pp. 1052-1054 ◽  
Author(s):  
Lara Grobler ◽  
Suzanne Ferreira ◽  
Elmarie Terblanche

The Paralympic Games have undergone many changes since their inception in 1960, one being the advances made in running-specific prostheses (RSPs) for track athletes with lower-limb amputations.Purpose:To investigate the sprinting-performance changes in athletes with lower-limb amputations since 1992 to assess whether the influence of developments in RSP technology is evident.Methods:The results of the Olympic and Paralympic Games ranging between 1992 and 2012 for the 100-m and 200-m were collected, and performance trends, percentage change in performance, and competition density (CD) were calculated.Results:The results indicate that the greatest performance increases were seen in athletes with lower-limb amputations (T42 = 26%, T44 = 14%). These performance improvements were greater than for Olympic athletes (<3%), as well as Paralympic athletes from other selected classes (<10%). The T42 and T44 classes also showed the lowest CD values.Discussion:These results suggest that although there is an overall trend for improved Paralympic sprint performances, RSP technology has played a noteworthy role in the progression of performances of athletes with amputations. It is also hypothesized that the difference in the performance improvements between the T42 and T44 classes is due to the level of disability and therefore the extent to which technology is required to enable locomotion.Conclusion:It is evident that RSP technology has played a significant role in the progression of performances in athletes with lower-limb amputations.

2019 ◽  
Vol 14 (10) ◽  
pp. 1357-1363 ◽  
Author(s):  
Paul A. Solberg ◽  
Will G. Hopkins ◽  
Gøran Paulsen ◽  
Thomas A. Haugen

Purpose:To quantify age of peak performance and performance improvements in the years preceding peak age in elite weightlifting and powerlifting athletes using results from powerlifting World Championships in 2003–2017 and weightlifting World Championships and Olympic Games in 1998–2017.Methods:Individual performance trends were derived by fitting a quadratic curve separately to each athlete’s performance and age data. Effects were evaluated using magnitude-based inferences.Results:Peak age (mean [SD]) was 35 (7) y for powerlifters and 26 (3) y for weightlifters, a large most likely substantial difference of 9, ±1 y (mean, 90% confidence limit). Men showed possibly higher peak age than women in weightlifting (0.8, ±0.7 y; small) and a possibly lower peak age in powerlifting (1.3, ±1.8 y; trivial). Peak age of athletes who ever won a medal was very likely less than that of nonmedalists in weightlifting (1.3, ±0.6 y; small), while the difference in powerlifters was trivial but unclear. Five-year improvements prior to peak age were 12% (10%) for powerlifters and 9% (7%) for weightlifters, a small possibly substantial difference (2.9, ±2.1%). Women exhibited possibly greater improvements than men in powerlifting (2.7, ±3.8%; small) and very likely greater in weightlifting (3.5, ±1.6%; small). Medalists possibly improved less than nonmedalists among powerlifters (−1.7, ±2.3%; small), while the difference was likely trivial for weightlifters (2.3, ±1.8%).Conclusion:These novel insights on performance development will be useful for practitioners evaluating strategies for achieving success.


2013 ◽  
Vol 38 ◽  
pp. 125-134 ◽  
Author(s):  
Argyris G. Toubekis ◽  
Evgenia Drosou ◽  
Vassilios Gourgoulis ◽  
Savvas Thomaidis ◽  
Helen Douda ◽  
...  

Abstract The study examined the changes of training load and physiological parameters in relation to competitive performance during a period leading to a national championship. The training content of twelve swimmers (age: 14.2±1.3 yrs) was recorded four weeks before the national championship (two weeks of normal training and two weeks of the taper). The training load was calculated: i) by the swimmer’s session-RPE score (RPE-Load), ii) by the training intensity levels adjusted after a 7x200-m progressively increasing intensity test (LA-Load). Swimmers completed a 400- m submaximal intensity test, a 15 s tethered swimming and hand-grip strength measurements 34-35 (baseline: Test 1), 20-21 (before taper: Test 2) and 6-7 (Test 3) days before the national championship. Performance during the national championship was not significantly changed compared to season best (0.1±1.6%; 95% confidence limits: -0.9, 1.1%; Effect Size: 0.02, p=0.72) and compared to performance before the start of the two-week taper period (0.9±1.7%; 95% confidence limits: 0.3, 2.1%; Effect size: 0.12, p=0.09). No significant changes were observed in all measured physiological and performance related variables between Test 1, Test 2, and Test 3. Changes in RPE-Load (week-4 vs. week-1) were correlated with changes in performance (r=0.63, p=0.03) and the RPE-Load was correlated with the LALoad (r=0.80, p=0.01). The estimation of the session-RPE training load may be helpful for taper planning of young swimmers. Increasing the difference between the normal and last week of taper training load may facilitate performance improvements.


2018 ◽  
Vol 13 (9) ◽  
pp. 1122-1129 ◽  
Author(s):  
Thomas A. Haugen ◽  
Paul A. Solberg ◽  
Carl Foster ◽  
Ricardo Morán-Navarro ◽  
Felix Breitschädel ◽  
...  

The aim of this study was to quantify peak age and improvements over the preceding years to peak age in elite athletic contestants according to athlete performance level, sex, and discipline. Individual season bests for world-ranked top 100 athletes from 2002 to 2016 (14,937 athletes and 57,049 individual results) were downloaded from the International Association of Athletics Federations’ website. Individual performance trends were generated by fitting a quadratic curve separately to each athlete’s performance and age data using a linear modeling procedure. Mean peak age was typically 25–27 y, but somewhat higher for marathon and male throwers (∼28–29 y). Women reached greater peak age than men in the hurdles and middle- and long-distance running events (mean difference, ±90% CL: 0.6, ±0.3 to 1.9, ±0.3 y: small to moderate). Male throwers had greater peak age than corresponding women (1.3, ±0.3 y: small). Throwers displayed the greatest performance improvements over the 5 y prior to peak age (mean [SD]: 7.0% [2.9%]), clearly ahead of jumpers, long-distance runners, hurdlers, middle-distance runners, and sprinters (3.4, ±0.2% to 5.2, ±0.2%; moderate to large). Similarly, top 10 athletes showed greater improvements than top 11–100 athletes in all events (1.0, ±0.9% to 1.8, ±1.1%; small) except throws. Women improved more than men in all events (0.4, ±0.2% to 2.9, ±0.4%) except sprints. This study provides novel insight on performance development in athletic contestants that are useful for practitioners when setting goals and evaluating strategies for achieving success.


Author(s):  
Romuald Lepers ◽  
François-Xavier Li ◽  
Paul James Stapley

The swimrun is a new endurance team-sport based on two persons swimming and running alternatively through open water and mostly trails. The aim of this study was to analyse participation and performance trends for males, females and mixed duo team at the ÖTILLÖ Swimrun race (10 km open-water swimming and 65 km trail running). During the 2012–2016 period, the mean total time performance of the best athletes at the ÖTILLÖ Swimrun decreased significantly by 17 min/year for males, 40 min/year for mixed and 59 min/year for females duo, respectively. The difference in performance between the best males and females duo (26 ± 15%) was significantly greater compared to the difference between males and mixed duo (12 ± 8%). The number of swimrun races organized across the world has dramatically increased these last years and will probably continue to grow up in the future. Swimrun athletes are still not very experienced, thus both improvements in performance and reduction in sex difference are expected in the next decade.


1994 ◽  
Vol 05 (03) ◽  
pp. 275-348
Author(s):  
BURHAN BAYRAKTAROGLU ◽  
J. AIDEN HIGGINS

The status of the microwave power HBT is reviewed. The rapid progress made in this technology is fueled by the need for high performance transmitter amplifiers, advanced military systems and supported by the favorable electronic properties of the device. A survey of the device design and fabrication techniques indicates that the technology has not yet reached its limit; further advances are possible and performance improvements will continue. The power and efficiency of GaAs HBTs are now competitive with the most advanced microwave devices in the 1–20 GHz range.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 49-54 ◽  
Author(s):  
E. Todd Ryan ◽  
Andrew J. McKerrow ◽  
Jihperng Leu ◽  
Paul S. Ho

Continuing improvement in device density and performance has significantly affected the dimensions and complexity of the wiring structure for on-chip interconnects. These enhancements have led to a reduction in the wiring pitch and an increase in the number of wiring levels to fulfill demands for density and performance improvements. As device dimensions shrink to less than 0.25 μm, the propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant. Accordingly the interconnect delay now constitutes a major fraction of the total delay limiting the overall chip performance. Equally important is the processing complexity due to an increase in the number of wiring levels. This inevitably drives cost up by lowering the manufacturing yield due to an increase in defects and processing complexity.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILDs) and alternative architectures have surfaced to replace the current Al(Cu)/SiO2 interconnect technology. These alternative architectures will require the introduction of low-dielectric-constant k materials as the interlayer dielectrics and/or low-resistivity conductors such as copper. The electrical and thermomechanical properties of SiO2 are ideal for ILD applications, and a change to material with different properties has important process-integration implications. To facilitate the choice of an alternative ILD, it is necessary to establish general criterion for evaluating thin-film properties of candidate low-k materials, which can be later correlated with process-integration problems.


Author(s):  
Daniel Stark ◽  
Stefania Di Gangi ◽  
Caio Victor Sousa ◽  
Pantelis Nikolaidis ◽  
Beat Knechtle

Though there are exhaustive data about participation, performance trends, and sex differences in performance in different running disciplines and races, no study has analyzed these trends in stair climbing and tower running. The aim of the present study was therefore to investigate these trends in tower running. The data, consisting of 28,203 observations from 24,007 climbers between 2014 and 2019, were analyzed. The effects of sex and age, together with the tower characteristics (i.e., stairs and floors), were examined through a multivariable statistical model with random effects on intercept, at climber’s level, accounting for repeated measurements. Men were faster than women in each age group (p < 0.001 for ages ≤69 years, p = 0.003 for ages > 69 years), and the difference in performance stayed around 0.20 km/h, with a minimum of 0.17 at the oldest age. However, women were able to outperform men in specific situations: (i) in smaller buildings (<600 stairs), for ages between 30 and 59 years and >69 years; (ii) in higher buildings (>2200 stairs), for age groups <20 years and 60–69 years; and (iii) in buildings with 1600–2200 stairs, for ages >69 years. In summary, men were faster than women in this specific running discipline; however, women were able to outperform men in very specific situations (i.e., specific age groups and specific numbers of stairs).


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


Author(s):  
David A. Joyner ◽  
Lily Bernstein ◽  
Maria-Isabelle Dittamo ◽  
Ben Engelman ◽  
Alysha Naran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document