Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump

2017 ◽  
Vol 12 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Pedro Jiménez-Reyes ◽  
Pierre Samozino ◽  
Fernando Pareja-Blanco ◽  
Filipe Conceição ◽  
Víctor Cuadrado-Peñafiel ◽  
...  

Purpose:To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force–velocity (F–v) profile (including unloaded and loaded jumps) in trained athletes.Methods:Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0–87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F–v relationship for each individual.Results:Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F–v relationship (SFv), respectively. Both methods showed high correlations for F–v-profile-related variables (r = .985–.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV <1.0%.Conclusions:These results suggest that the simple method presented here is valid and reliable for computing CMJ force, velocity, power, and F–v profiles in athletes and could be used in practice under field conditions when body mass, push-off distance, and jump height are known.

2018 ◽  
Author(s):  
Jean-Benoit Morin ◽  
Pedro Jiménez-Reyes ◽  
Matt Brughelli ◽  
Pierre Samozino

Lower limb maximal power output (Pmax) is a key physical component of performance in many sports. During squat jump (SJ) and countermovement jump (CMJ) tests, athletes produce high amounts of mechanical work over a short duration to displace their body mass (i.e. the dimension of mechanical power). Thus, jump height has been frequently used by the sports science and medicine communities as an indicator of Pmax. However, in this article, we contended that SJ and CMJ height are in fact poor indicators of Pmax in trained populations. To support our opinion, we first detailed why, theoretically, jump height and Pmax are not fully related. Specifically, we demonstrated that individual body mass, distance of push-off, optimal loading and force-velocity characteristics confound the jump height-Pmax relationship. We also discussed the poor relationship between SJ or CMJ height and Pmax measured with a force plate based on data reported in the literature, which added to our own experimental evidence.Finally, we discussed the limitations of existing practical solutions (regression-based estimation equations and allometric scaling), and advocated using a valid, reliable and simple field-based procedure to compute individual Pmax directly from jump height, body mass and push-off distance. The latter may allow researchers and practitioners to reduce bias in their assessment of Pmax by using jump height as an input with a simple yet accurate computation method, and not as the first/only variable of interest.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


2018 ◽  
Vol 34 (5) ◽  
pp. 410-413 ◽  
Author(s):  
Jason Lake ◽  
Peter Mundy ◽  
Paul Comfort ◽  
John J. McMahon ◽  
Timothy J. Suchomel ◽  
...  

This study examined concurrent validity of countermovement vertical jump reactive strength index modified and force–time characteristics recorded using a 1-dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral countermovement vertical jumps on 2 portable force plates placed on top of 2 in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to takeoff; jump height; reactive strength index modified; and braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r ≥ .99). There were small (d < 0.12) but significant differences between their respective braking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (P < .001). However, limits of agreement yielded a mean value of 1.7% relative to the laboratory force plate system (95% confidence limits, 0.9%–2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement were for jump height (2.1%), time to takeoff (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force–time variables, from unloaded countermovement vertical jump. Thus, practitioners can use both force plates interchangeably.


Author(s):  
Kuei-Yu Chien ◽  
Wei-Gang Chang ◽  
Wan-Chin Chen ◽  
Rong-Jun Liou

Abstract Background Water jumping exercise is an alternative method to achieve maintenance of bone health and reduce exercise injuries. Clarifying the ground reaction force (GRF) of moderate and high cardiopulmonary exercise intensities for jumping movements can help quantify the impact force during different exercise intensities. Accelerometers have been explored for measuring skeletal mechanical loading by estimating the GRFs. Predictive regression equations for GRF using ACC on land have already been developed and performed outside laboratory settings, whereas a predictive regression equation for GRF in water exercises is not yet established. The purpose of this study was to determine the best accelerometer wear-position for three exercise intensities and develop and validate the ground reaction force (GRF) prediction equation. Methods Twelve healthy women (23.6 ± 1.83 years, 158.2 ± 5.33 cm, 53.1 ± 7.50 kg) were recruited as participants. Triaxial accelerometers were affixed 3 cm above the medial malleolus of the tibia, fifth lumbar vertebra, and seventh cervical vertebra (C7). The countermovement jump (CMJ) cadence started at 80 beats/min and increased by 5 beats per 20 s to reach 50%, 65%, and 80% heart rate reserves, and then participants jumped five more times. One-way repeated analysis of variance was used to determine acceleration differences among wear-positions and exercise intensities. Pearson’s correlation was used to determine the correlation between the acceleration and GRF per body weight on land (GRFVLBW). Backward regression analysis was used to generate GRFVLBW prediction equations from full models with C7 acceleration (C7 ACC), age, percentage of water deep divided by body height (PWDH), and bodyweight as predictors. Paired t-test was used to determine GRFVLBW differences between values from the prediction equation and force plate measurement during validation. Lin’s CCC and Bland–Altman plots were used to determine the agreement between the predicted and force plate-measured GRFVLBW. Results The raw full profile data for the resultant acceleration showed that the acceleration curve of C7 was similar to that of GRFv. The predicted formula was − 1.712 + 0.658 * C7ACC + 0.016 * PWDH + 0.008 * age + 0.003*weight. Lin’s CCC score was 0.7453, with bias of 0.369%. Conclusion The resultant acceleration measured at C7 was identified as the valid estimated GRFVLBW during CMJ in water.


Motor Control ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 39-56
Author(s):  
James Hackney ◽  
Jade McFarland ◽  
David Smith ◽  
Clinton Wallis

Most studies of high-speed lower body movements include practice repetitions for facilitating consistency between the trials. We investigated whether 20 repetitions of drop landing (from a 30.5-cm platform onto a force plate) could improve consistency in maximum ground reaction force, linear lower body stiffness, depth of landing, and jump height in 20 healthy, young adults. Coefficient of variation was the construct for variability used to compare the first to the last five repetitions for each variable. We found that the practice had the greatest effect on maximum ground reaction force (p = .017), and had smaller and similar effects on lower body stiffness and depth of landing (p values = .074 and .044, respectively), and no measurable effect on jump height. These findings suggest that the effect of practice on drop landing differs depending upon the variable measure and that 20 repetitions significantly improve consistency in ground reaction force.


2011 ◽  
Vol 27 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Tyler J. Kirby ◽  
Jeffrey M. McBride ◽  
Tracie L. Haines ◽  
Andrea M. Dayne

The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r= .9337,p< .0001, power = 1.000) and countermovement jump (r= .925,p< .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r= –0.3947,p= .0018, power = 0.8831) and countermovement jump (r= –0.4080,p= .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.


2009 ◽  
Vol 4 (4) ◽  
pp. 461-473 ◽  
Author(s):  
Jenna M. Kraska ◽  
Michael W. Ramsey ◽  
G. Gregory Haff ◽  
Nate Fethke ◽  
William A. Sands ◽  
...  

Purpose:To investigate the relationship between maximum strength and differences in jump height during weighted and unweighted (body weight) static (SJ) and countermovement jumps (CMJ).Methods:Sixty-three collegiate athletes (mean ± SD; age= 19.9 ± 1.3 y; body mass = 72.9 ± 19.6 kg; height = 172.8 ± 7.7 cm) performed two trials of the SJ and CMJ with 0 kg and 20 kg on a force plate; and two trials of mid-thigh isometric clean pulls in a custom rack over a force plate (1000-Hz sampling). Jump height (JH) was calculated from fight time. Force-time curve analyses determined the following: isometric peak force (IPF), isometric force (IF) at 50, 90, and 250 ms, and isometric rates of force development (IRFD). Absolute and allometric scaled forces, [absolute force/(body mass0.67)], were used in correlations.Results:IPF, IRFD, F50a, F50, F90, and F250 showed moderate/strong correlations with SJ and CMJ height percent decrease from 0 to 20 kg. IPFa and F250a showed weak/moderate correlations with percent height decrease. Comparing strongest (n = 6) to weakest (n = 6): t tests revealed that stronger athletes (IPFa) performed superior to weaker athletes.Conclusion:Data indicate the ability to produce higher peak and instantaneous forces and IRFD is related to JH and to smaller differences between weighted and unweighted jump heights. Stronger athletes jump higher and show smaller decrements in JH with load. A weighted jump may be a practical method of assessing relative strength levels.


2020 ◽  
Vol 9 (4) ◽  
pp. 31-36
Author(s):  
Theodoros M Bampouras ◽  
Joseph I Esformes

Post-activation potentiation enhancement (PAPE) refers to increased force generation following a muscular conditioning pre-activity that acutely enhances subsequent strength and power performance. Athlete apprehension to use heavy weights (i.e. >80%1RM) immediately before a competition or inability to use weights before the performance (e.g. due to regulations) prevent materialising the benefits of PAPE. Therefore, this study examined whether PAPE can be induced with bodyweight squats. Sixteen healthy, team sports players (male: 10, female: 6, mean ± SD: age 22.2 ± 3.0 years, height 1.67 ± 0.08 m, body mass 70.2 ± 8.2 kg) performed three sets of ten repetitions of bodyweight squats with 30 seconds recovery between each set. A countermovement jump was performed 5 minutes before, 2 and 4 minutes after the squat sets and jump height was calculated. The results showed existence of PAPE with the jump height increasing at both 2 (30.8 ± 5.6 cm, p = 0.045, g = 0.21) and 4 (30.8 ± 6.1 cm, p = 0.037, g = 0.20) minutes, compared to baseline (29.5 ± 6.4 cm). This is the first study to use bodyweight squats rather than loaded squats. Our findings indicate that three sets of ten repetitions of squats using bodyweight only can be a sufficient stimulus to induce PAPE.


2020 ◽  
Vol 75 (1) ◽  
pp. 41-64
Author(s):  
Henryk Król ◽  
Małgorzata Klyszcz-Morciniec ◽  
Bogdan Bacik

Abstract The aim of this study was to investigate the relationships between the internal and external structure of basic acrobatic jumps. Eleven healthy elite artistic gymnasts (9 female, 2 male) participated in this study. Participants performed the following basic ‘acrobatic’ jumps: a tucked backward somersault (TS), a piked backward somersault (PS), and a countermovement jump (CMJ). Furthermore, female gymnasts also performed the backward handspring (HS), taking off and then landing on their hands in the same place – a specific jump only for women. All jumps were initiated from a stationary upright posture and with an arms swing. Six infrared cameras, synchronized with a module for wireless measurement of the electrical activity of eight muscles, and the force plate were used. Infrared camera-recordings were made in order to obtain kinematic variables describing the movement structure of the acrobatic jumps. These variables may explain the characteristics of muscle activation (the internal structure of the movement) and ground reaction force (the external-kinetic structure of the movement). However, for various technical reasons, it was not possible to register all the specified jumps in the protocol. Moreover, the distribution normalities, estimated by the Kolmogorov-Smirnov test, differed between variables. Therefore, to compare the data, the pair-wise nonparametric Wilcoxon Signed-Ranks Test was applied. The CMJ showed the highest level of vertical impulse, velocity, and displacement followed by the TS, PS, and HS. In the take-off phase of acrobatic jumps with rotation the average muscle activation levels of the biceps femoris were significantly higher and of the rectus femoris significantly lower than in the countermovement jump.


Sign in / Sign up

Export Citation Format

Share Document