Player Session Rating of Perceived Exertion: A More Valid Tool Than Coaches’ Ratings to Monitor Internal Training Load in Elite Youth Female Basketball

2020 ◽  
Vol 15 (4) ◽  
pp. 548-553 ◽  
Author(s):  
Corrado Lupo ◽  
Alexandru Nicolae Ungureanu ◽  
Riccardo Frati ◽  
Matteo Panichi ◽  
Simone Grillo ◽  
...  

Purpose: To monitor elite youth female basketball training to verify whether players’ and coaches’ (3 technical coaches and 1 physical trainer) session rating of perceived exertion (s-RPE) has a relationship with Edwards’ method. Methods: Heart rate of 15 elite youth female basketball players (age 16.7 [0.5] y, height 178 [9] cm, body mass 72 [9] kg, body mass index 22.9 [2.2] kg·m−2) was monitored during 19 team (268 individual) training sessions (102 [15] min). Mixed effect models were applied to evaluate whether s-RPE values were significantly (P ≤ .05) related to Edwards’ data, total session duration, maximal intensity (session duration at 90–100% HRmax), type of training (ie, strength, conditioning, and technique), and whether differences emerged between players’ and coaches’ s-RPE values. Results: The results showed that there is a relationship between s-RPE and Edwards’ methods for the players’ RPE scores (P = .019) but not for those of the trainers. In addition, as expected, both players’ (P = .014) and coaches’ (P = .002) s-RPE scores were influenced by total session duration but not by maximal intensity and type of training. In addition, players’ and coaches’ s-RPE values differed (P < .001)—post hoc differences emerged for conditioning (P = .01) and technique (P < .001) sessions. Conclusions: Elite youth female basketball players are better able to quantify the internal training load of their sessions than their coaches, strengthening the validity of s-RPE as a tool to monitor training in team sports.

Author(s):  
Alexandru Nicolae Ungureanu ◽  
Corrado Lupo ◽  
Gennaro Boccia ◽  
Paolo Riccardo Brustio

Purpose: The primary aim of this study was to evaluate whether the internal (session rating of perceived exertion [sRPE] and Edwards heart-rate-based method) and external training load (jumps) affect the presession well-being perception on the day after (ie, +22 h), according to age and tactical position, in elite (ie, Serie A2) female volleyball training. Methods: Ten female elite volleyball players (age = 23 [4] y, height = 1.82 [0.04] m, body mass = 73.2 [4.9] kg) had their heart rate monitored during 13 team (115 individual) training sessions (duration: 101 [8] min). Mixed-effect models were applied to evaluate whether sRPE, Edwards method, and jumps were correlated (P ≤ .05) to Hooper index factors (ie, perceived sleep quality/disorders, stress level, fatigue, and delayed-onset muscle soreness) in relation to age and tactical position (ie, hitters, central blockers, opposites, and setters). Results: The results showed a direct relationship between sRPE (P < .001) and presession well-being perception 22 hours apart, whereas the relationship was the inverse for Edwards method internal training load. Age, as well as the performed jumps, did not affect the well-being perception of the day after. Finally, central blockers experienced a higher delayed-onset muscle soreness than hitters (P = .003). Conclusions: Findings indicated that female volleyball players’ internal training load influences the pretraining well-being status on the day after (+ 22 h). Therefore, coaches can benefit from this information to accurately implement periodization in a short-term perspective and to properly adopt recovery strategies in relation to the players’ well-being status.


2019 ◽  
Vol 34 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Brenton Surgenor ◽  
Matthew Wyon

OBJECTIVE: The session rating of perceived exertion (session-RPE) is a practical and non-invasive method that allows a quantification of internal training load (ITL) in individual and team sports. As yet, no study has investigated its construct validity in dance. This study examines the convergent validity between the session-RPE method and an objective heart rate (HR)-based method of quantifying the similar ITL in vocational dance students during professional dance training. METHODS: Ten dance students (4 male, 20±1.16 yrs; 6 female, 20±0.52 yrs) participated in this study. During a normal week of training, session-RPE and HR data were recorded in 96 individual sessions. HR data were analysed using Edwards-TL method. Correlation analysis was used to evaluate the convergent validity between the session-RPE and Edwards-TL methods for assessing ITL in a variety of training modes (contemporary, ballet, and rehearsal). RESULTS: The overall correlation between individual session-RPE and Edwards-TL was r=0.72, p<0.0001, suggesting there was a statistically significantly strong positive relationship between session-RPE and Edwards-TL. This trend was observed across all the training modes: rehearsal sessions (r=0.74, p=0.001), contemporary (r=0.60, p=0.001), and ballet (r=0.46, p=0.018) sessions. CONCLUSIONS: This study shows that session-RPE can be considered as a valid method to assess ITL for vocational dance students, and that notably there is some variation between session-RPE and HR-based TL in different dance activities.


2014 ◽  
Vol 9 (4) ◽  
pp. 656-660 ◽  
Author(s):  
Corrado Lupo ◽  
Laura Capranica ◽  
Antonio Tessitore

Context:The assessment of internal training load (ITL) using the session rating of perceived exertion (session RPE) has been demonstrated to provide valuable information, also in team sports. Nevertheless, no studies have investigated the use of this method during youth water polo training.Purpose:To evaluate youth water polo training, showing the corresponding level of reliability of the session-RPE method.Methods:Thirteen male youth water polo players (age 15.6 ± 0.5 y, height 1.80 ± 0.06 m, body mass 72.7 ± 7.8 kg) were monitored during 8 training sessions (80 individual training sessions) over 10 d. The Edwards summated heart-rate-zone method was used as a reference measure of ITL; the session-RPE rating was obtained using CR-10 scale modified by Foster. The Pearson product–moment was applied to regress the Edwards heart-rate-zone method against CR-10 session RPE for each training session and individual data.Results:Analyses reported overall high (r = .88, R2 = .78) and significant (P < .001) correlations between the Edwards heart-rate and session-RPE methods. Significant correlations were also shown for each training session (r range .69–.92, R2 range .48–.85, P < .05) and individual data (r range .76–.98, R2 range .58–.97, P < .05).Discussion:The results confirmed that the session-RPE method as an easy and reliable tool to evaluate ITL in youth water polo, allowing coaches to efficiently monitor their training plans.


2020 ◽  
Vol 15 (6) ◽  
pp. 833-840
Author(s):  
Devin G. McCarthy ◽  
Kate A. Wickham ◽  
Tyler F. Vermeulen ◽  
Danielle L. Nyman ◽  
Shane Ferth ◽  
...  

During play, ice hockey goaltenders routinely dehydrate through sweating and lose ≥2% body mass, which may impair thermoregulation and performance. Purpose: This randomized, crossover study examined the effects of mild dehydration on goaltender on-ice thermoregulation, heart rate, fatigue, and performance. Methods: Eleven goaltenders played a 70-minute scrimmage followed by a shootout and drills to analyze reaction time and movements. On ice, they either consumed no fluid (NF) and lost 2.4% (0.3%) body mass or maintained body mass with water (WAT) or a carbohydrate–electrolyte solution (CES). Save percentage, rating of perceived exertion, heart rate, and core temperature were recorded throughout, and a postskate questionnaire assessed perceived fatigue. Results: Relative to NF, intake of both fluids decreased heart rate (interaction: P = .03), core temperature (peak NF = 39.0°C [0.1°C], WAT = 38.6°C [0.1°C], and CES = 38.5°C [0.1°C]; P = .005), and rating of perceived exertion in the scrimmage (post hoc: P < .04), as well as increasing save percentage in the final 10 minutes of scrimmage (NF = 75.8% [1.9%], WAT = 81.7% [2.3%], and CES = 81.3% [2.3%], post hoc: P < .04). In drills, movement speed (post hoc: P < .05) and reaction time (post hoc: P < .04) were slower in the NF versus both fluid conditions. Intake of either fluid similarly reduced postskate questionnaire scores (condition: P < .0001). Only CES significantly reduced rating of perceived exertion in drills (post hoc: P < .05) and increased peak movement power versus NF (post hoc: P = .02). Shootout save percentage was similar between conditions (P = .37). Conclusions: Mild dehydration increased physiological strain and fatigue and decreased ice hockey goaltender performance versus maintaining hydration. Also, maintaining hydration with a CES versus WAT may further reduce perceived fatigue and positively affect movements.


2018 ◽  
Vol 13 (8) ◽  
pp. 1067-1074 ◽  
Author(s):  
Daniele Conte ◽  
Nicholas Kolb ◽  
Aaron T. Scanlan ◽  
Fabrizio Santolamazza

Purpose: To characterize the weekly training load (TL) and well-being of college basketball players during the in-season phase. Methods: Ten (6 guards and 4 forwards) male basketball players (age 20.9 [0.9] y, stature 195.0 [8.2] cm, and body mass 91.3 [11.3] kg) from the same Division I National Collegiate Athletic Association team were recruited to participate in this study. Individualized training and game loads were assessed using the session rating of perceived exertion at the end of each training and game session, and well-being status was collected before each session. Weekly changes (%) in TL, acute-to-chronic workload ratio, and well-being were determined. Differences in TL and well-being between starting and bench players and between 1-game and 2-game weeks were calculated using magnitude-based statistics. Results: Total weekly TL and acute-to-chronic workload ratio demonstrated high week-to-week variation, with spikes up to 226% and 220%, respectively. Starting players experienced a higher (most likely negative) total weekly TL and similar (unclear) well-being status compared with bench players. Game scheduling influenced TL, with 1-game weeks demonstrating a higher (likely negative) total weekly TL and similar (most likely trivial) well-being status compared with 2-game weeks. Conclusions: These findings provide college basketball coaches information to optimize training strategies during the in-season phase. Basketball coaches should concurrently consider the number of weekly games and player status (starting vs bench player) when creating individualized periodization plans, with increases in TL potentially needed in bench players, especially in 2-game weeks.


2017 ◽  
Vol 12 (9) ◽  
pp. 1238-1242 ◽  
Author(s):  
Kaitlyn J. Weiss ◽  
Sian V. Allen ◽  
Mike R. McGuigan ◽  
Chris S. Whatman

Purpose:To establish the relationship between the acute:chronic workload ratio and lower-extremity overuse injuries in professional basketball players over the course of a competitive season. Methods:The acute:chronic workload ratio was determined by calculating the sum of the current week’s session rating of perceived exertion of training load (acute load) and dividing it by the average weekly training load over the previous 4 wk (chronic load). All injuries were recorded weekly using a self-report injury questionnaire (Oslo Sports Trauma Research Center Injury Questionnaire20). Workload ratios were modeled against injury data using a logistic-regression model with unique intercepts for each player. Results:Substantially fewer team members were injured after workload ratios of 1 to 1.49 (36%) than with very low (≤0.5; 54%), low (0.5–0.99; 51%), or high (≥1.5; 59%) workload ratios. The regression model provided unique workload–injury trends for each player, but all mean differences in likelihood of being injured between workload ratios were unclear. Conclusions:Maintaining workload ratios of 1 to 1.5 may be optimal for athlete preparation in professional basketball. An individualized approach to modeling and monitoring the training load–injury relationship, along with a symptom-based injury-surveillance method, should help coaches and performance staff with individualized training-load planning and prescription and with developing athlete-specific recovery and rehabilitation strategies.


2020 ◽  
Vol 15 (4) ◽  
pp. 450-456 ◽  
Author(s):  
Jordan L. Fox ◽  
Robert Stanton ◽  
Charli Sargent ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To quantify and compare external and internal game workloads according to contextual factors (game outcome, game location, and score-line). Methods: Starting semiprofessional, male basketball players were monitored during 19 games. External (PlayerLoad™ and inertial movement analysis variables) and internal (summated-heart-rate-zones and rating of perceived exertion [RPE]) workload variables were collected for all games. Linear mixed-effect models and effect sizes were used to compare workload variables based on each of the contextual variables assessed. Results: The number of jumps, absolute and relative (in min−1) high-intensity accelerations and decelerations, and relative changes-of-direction were higher during losses, whereas session RPE was higher during wins. PlayerLoad™ the number of absolute and relative jumps, high-intensity accelerations, absolute and relative total decelerations, total changes-of-direction, summated-heart-rate-zones, session RPE, and RPE were higher during away games, whereas the number of relative high-intensity jumps was higher during home games. PlayerLoad™, the number of high-intensity accelerations, total accelerations, absolute and relative decelerations, absolute and relative changes-of-direction, summated-heart-rate-zones, sRPE, and RPE were higher during balanced games, whereas the relative number of total and high-intensity jumps were higher during unbalanced games. Conclusions: Due to increased intensity, starting players may need additional recovery following losses. Given the increased external and internal workload volumes encountered during away games and balanced games, practitioners should closely monitor playing times during games. Monitoring playing times may help identify when players require additional recovery or reduced training volumes to avoid maladaptive responses across the in-season.


2017 ◽  
Vol 12 (2) ◽  
pp. 168-174 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Jordan L. Fox ◽  
Nattai R. Borges ◽  
Ben J. Dascombe ◽  
Vincent J. Dalbo

Purpose:The influence of various factors on training-load (TL) responses in basketball has received limited attention. This study aimed to examine the temporal changes and influence of cumulative training dose on TL responses and interrelationships during basketball activity.Methods:Ten state-level Australian male junior basketball players completed 4 × 10-min standardized bouts of simulated basketball activity using a circuit-based protocol. Internal TL was quantified using the session rating of perceived exertion (sRPE), summated heart-rate zones (SHRZ), Banister training impulse (TRIMP), and Lucia TRIMP models. External TL was assessed via measurement of mean sprint and circuit speeds. Temporal TL comparisons were performed between 10-min bouts, while Pearson correlation analyses were conducted across cumulative training doses (0–10, 0–20, 0–30, and 0–40 min).Results:sRPE TL increased (P < .05) after the first 10-min bout of basketball activity. sRPE TL was only significantly related to Lucia TRIMP (r = .66–.69; P < .05) across 0–10 and 0–20 min. Similarly, mean sprint and circuit speed were significantly correlated across 0–20 min (r = .67; P < .05). In contrast, SHRZ and Banister TRIMP were significantly related across all training doses (r = .84–.89; P < .05).Conclusions:Limited convergence exists between common TL approaches across basketball training doses lasting beyond 20 min. Thus, the interchangeability of commonly used internal and external TL approaches appears dose-dependent during basketball activity, with various psychophysiological mediators likely underpinning temporal changes.


Kinesiology ◽  
2018 ◽  
Vol 50 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Luka Svilar ◽  
Igor Jukić

The study aimed to describe and compare the external training load, monitored using microtechnology, with the internal training load, expressed as the session rating of perceived exertion (sRPE), in elite male basketball training sessions. Thirteen professional basketball players participated in this study (age=25.7±3.3 years; body height=199.2±10.7 cm; body mass=96.6±9.4 kg). All players belonged to the same team, competing in two leagues, ACB and the Euroleague, in the 2016/2017 season. The variables assessed within the external motion analysis included: Player Load (PL), acceleration and deceleration (ACC/DEC), jumps (JUMP), and changes of direction (CoD). The internal demands were registered using the sRPE method. Pearson product-moment correlations were used to determine relationships between the variables. A significant correlation was observed between the external load variables and sRPE (range r=0.71–0.93). Additionally, the sRPE variable showed a high correlation with the total PL, ACC, DEC, and CoD. The contrary was observed with respect to the relationship between sRPE and JUMP variables: the correlation was higher for the high band and lower for the total number of jumps. With respect to the external load variables, a stronger correlation was found between PL and the total number of ACC, DEC and COD than the same variables within the high band. The only contrary finding was the correlation between PL and JUMP variables, which showed a stronger correlation for hJUMP. Tri-axial accelerometry technology and the sRPE method serve as valuable tools for monitoring the training load in basketball. Even though the two methods exhibit a strong correlation, some variation exists, likely due to frequent static movements (i.e., isometric muscle contractions) that accelerometers are not able to detect. Finally, it is suggested that both methods are to be used complementary, when possible, in order to design and control the training process as effectively as possible.


Author(s):  
Seifeddine Brini ◽  
Daniel Boullosa ◽  
Julio Calleja-González ◽  
Anne Delextrat

The objective of this study was to investigate the construct validity and reliability of a new reactive multidirectional repeated sprinting test (RRSA5COD) in basketball players. Forty male basketball players were divided into two groups: Professional (PRO; n = 20) and Semi-professional (SEMI; n = 20). Participants completed the yo-yo intermittent recovery test level 1 (Yo-YoIR1), the squat jump (SJ), the counter movement jump (CMJ), the single leg drop jump (DJ), the 20-m sprint test, the planed multidirectional repeated sprinting test (PRSA5COD), and the RRSA5COD test. Reaction time (RT) and movement time (MT), total time (TT), best time (BT), and fatigue index (FI) were assessed. Heart rate (HR) was continuously recorded, while rating of perceived exertion (RPE) and blood lactate concentration (LA) were measured post-tests. The reliability of the RRSA5COD test was also assessed between two attempts with one week between them. The RRSA5COD results demonstrated to be reliable with most of the variables showing ICC > 0.80. BA Bonferroni post hoc revealed a significant better TT in favor of RRSA5COD (p < 0.001; ES = 0.15; small), and in favor of PRO (p < 0.001; ES = 0.006; small). The result showed a significant better performance in favor of PRO in all physical fitness tests. In conclusion, it was found that the RRSA5COD discriminates between professional and semi-professional male basketball players, and the results were demonstrated to be reliable.


Sign in / Sign up

Export Citation Format

Share Document