The Impact of Contextual Factors on Game Demands in Starting, Semiprofessional, Male Basketball Players

2020 ◽  
Vol 15 (4) ◽  
pp. 450-456 ◽  
Author(s):  
Jordan L. Fox ◽  
Robert Stanton ◽  
Charli Sargent ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To quantify and compare external and internal game workloads according to contextual factors (game outcome, game location, and score-line). Methods: Starting semiprofessional, male basketball players were monitored during 19 games. External (PlayerLoad™ and inertial movement analysis variables) and internal (summated-heart-rate-zones and rating of perceived exertion [RPE]) workload variables were collected for all games. Linear mixed-effect models and effect sizes were used to compare workload variables based on each of the contextual variables assessed. Results: The number of jumps, absolute and relative (in min−1) high-intensity accelerations and decelerations, and relative changes-of-direction were higher during losses, whereas session RPE was higher during wins. PlayerLoad™ the number of absolute and relative jumps, high-intensity accelerations, absolute and relative total decelerations, total changes-of-direction, summated-heart-rate-zones, session RPE, and RPE were higher during away games, whereas the number of relative high-intensity jumps was higher during home games. PlayerLoad™, the number of high-intensity accelerations, total accelerations, absolute and relative decelerations, absolute and relative changes-of-direction, summated-heart-rate-zones, sRPE, and RPE were higher during balanced games, whereas the relative number of total and high-intensity jumps were higher during unbalanced games. Conclusions: Due to increased intensity, starting players may need additional recovery following losses. Given the increased external and internal workload volumes encountered during away games and balanced games, practitioners should closely monitor playing times during games. Monitoring playing times may help identify when players require additional recovery or reduced training volumes to avoid maladaptive responses across the in-season.

Author(s):  
Markus N.C. Williams ◽  
Vincent J. Dalbo ◽  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To compare weekly training and game demands according to playing position in basketball players. Methods: A longitudinal, observational study was adopted. Semiprofessional, male basketball players categorized as backcourt (guards; n = 4) and frontcourt players (forwards/centers; n = 4) had their weekly workloads monitored across an entire season. External workload was determined using microsensors and included PlayerLoad™ (PL) and inertial movement analysis variables. Internal workload was determined using heart rate to calculate absolute and relative summated-heart-rate-zones workload and rating of perceived exertion (RPE) to calculate session-RPE workload. Comparisons between weekly training and game demands were made using linear mixed models and effect sizes in each positional group. Results: In backcourt players, higher relative PL (P = .04, very large) and relative summated-heart-rate-zones workload (P = .007, very large) were evident during training, while greater session-RPE workload (P = .001, very large) was apparent during games. In frontcourt players, greater PL (P < .001, very large), relative PL (P = .019, very large), peak PL intensities (P < .001, moderate), high-intensity inertial movement analysis events (P = .002, very large), total inertial movement analysis events (P < .001, very large), summated-heart-rate-zones workload (P < .001, very large), RPE (P < .001, very large), and session-RPE workload (P < .001, very large) were evident during games. Conclusions: Backcourt players experienced similar demands between training and games across several variables, with higher average workload intensities during training. Frontcourt players experienced greater demands across all variables during games than training. These findings emphasize the need for position-specific preparation strategies leading into games in basketball teams.


2020 ◽  
Vol 15 (8) ◽  
pp. 1081-1086
Author(s):  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To investigate the relationships between external and internal workloads using a comprehensive selection of variables during basketball training and games. Methods: Eight semiprofessional, male basketball players were monitored during training and games for an entire season. External workload was determined as PlayerLoad™: total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events. Internal workload was determined using the summated-heart-rate zones and session rating of perceived exertion models. The relationships between external and internal workload variables were separately calculated for training and games using repeated-measures correlations with 95% confidence intervals. Results: PlayerLoad was more strongly related to summated-heart-rate zones (r = .88 ± .03, very large [training]; r = .69 ± .09, large [games]) and session rating of perceived exertion (r = .74 ± .06, very large [training]; r = .53 ± .12, large [games]) than other external workload variables (P < .05). Correlations between total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events and internal workloads were stronger during training (r = .44–.88) than during games (r = .15–.69). Conclusions: PlayerLoad and summated-heart-rate zones possess the strongest dose–response relationship among a comprehensive selection of external and internal workload variables in basketball, particularly during training sessions compared with games. Basketball practitioners may therefore be able to best anticipate player responses when prescribing training drills using these variables for optimal workload management across the season.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4250 ◽  
Author(s):  
Giuseppe Marcolin ◽  
Nicola Camazzola ◽  
Fausto Antonio Panizzolo ◽  
Davide Grigoletto ◽  
Antonio Paoli

Background In basketball a maximum accuracy at every game intensity is required while shooting. The aim of the present study was to investigate the acute effect of three different drill intensity simulation protocols on jump shot accuracy in expert and junior basketball players. Materials & Methods Eleven expert players (age 26 ± 6 yrs, weight 86 ± 11 kg, height 192 ± 8 cm) and ten junior players (age 18 ± 1 yrs, weight 75 ± 12 kg, height 184 ± 9 cm) completed three series of twenty jump shots at three different levels of exertion. Counter Movement Jump (CMJ) height was also measured after each series of jump shots. Exertion’s intensity was induced manipulating the basketball drills. Heart rate was measured for the whole duration of the tests while the rating of perceived exertion (RPE) was collected at the end of each series of shots. Results Heart rate and rating of perceived exertion (RPE) were statistically different in the three conditions for both expert and junior players. CMJ height remained almost unchanged in both groups. Jump shot accuracy decreased with increasing drills intensity both in experts and junior players. Expert players showed higher accuracy than junior players for all the three levels of exertion (83% vs 64%, p < 0.001; 75% vs 57%, p < 0.05; 76% vs 60%, p < 0.01). Moreover, for the most demanding level of exertion, experts showed a higher accuracy in the last ten shots compared to the first ten shots (82% vs 70%, p < 0.05). Discussion Experts coped better with the different exertion’s intensities, thus maintaining a higher level of performance. The introduction of technical short bouts of high-intensity sport-specific exercises into skill sessions should be proposed to improve jump shot accuracy during matches.


2019 ◽  
Vol 14 (10) ◽  
pp. 1331-1337 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Robert Stanton ◽  
Charli Sargent ◽  
Cody O’Grady ◽  
Michele Lastella ◽  
...  

Purpose: To quantify and compare internal and external workloads in regular and overtime games and examine changes in relative workloads during overtime compared with other periods in overtime games in male basketball players. Methods: Starting players for a semiprofessional male basketball team were monitored during 2 overtime games and 2 regular games (nonovertime) with similar contextual factors. Internal (rating of perceived exertion and heart-rate variables) and external (PlayerLoad and inertial movement analysis variables) workloads were quantified across games. Separate linear mixed-models and effect-size analyses were used to quantify differences in variables between regular and overtime games and between game periods in overtime games. Results: Session rating-of-perceived-exertion workload (P = .002, effect size 2.36, very large), heart-rate workload (P = .12, 1.13, moderate), low-intensity change-of-direction events to the left (P = .19, 0.95, moderate), medium-intensity accelerations (P = .12, 1.01, moderate), and medium-intensity change-of-direction events to the left (P = .10, 1.06, moderate) were higher during overtime games than during regular games. Overtime periods also exhibited reductions in relative PlayerLoad (first quarter P = .03, −1.46, large), low-intensity accelerations (first quarter P = .01, −1.45, large; second quarter P = .15, −1.22, large), and medium-intensity accelerations (first quarter P = .09, −1.32, large) compared with earlier periods. Conclusions: Overtime games disproportionately elevate perceptual, physiological, and acceleration workloads compared with regular games in starting basketball players. Players also perform at lower external intensities during overtime periods than earlier quarters during basketball games.


Author(s):  
Alexandru Nicolae Ungureanu ◽  
Corrado Lupo ◽  
Gennaro Boccia ◽  
Paolo Riccardo Brustio

Purpose: The primary aim of this study was to evaluate whether the internal (session rating of perceived exertion [sRPE] and Edwards heart-rate-based method) and external training load (jumps) affect the presession well-being perception on the day after (ie, +22 h), according to age and tactical position, in elite (ie, Serie A2) female volleyball training. Methods: Ten female elite volleyball players (age = 23 [4] y, height = 1.82 [0.04] m, body mass = 73.2 [4.9] kg) had their heart rate monitored during 13 team (115 individual) training sessions (duration: 101 [8] min). Mixed-effect models were applied to evaluate whether sRPE, Edwards method, and jumps were correlated (P ≤ .05) to Hooper index factors (ie, perceived sleep quality/disorders, stress level, fatigue, and delayed-onset muscle soreness) in relation to age and tactical position (ie, hitters, central blockers, opposites, and setters). Results: The results showed a direct relationship between sRPE (P < .001) and presession well-being perception 22 hours apart, whereas the relationship was the inverse for Edwards method internal training load. Age, as well as the performed jumps, did not affect the well-being perception of the day after. Finally, central blockers experienced a higher delayed-onset muscle soreness than hitters (P = .003). Conclusions: Findings indicated that female volleyball players’ internal training load influences the pretraining well-being status on the day after (+ 22 h). Therefore, coaches can benefit from this information to accurately implement periodization in a short-term perspective and to properly adopt recovery strategies in relation to the players’ well-being status.


2020 ◽  
Vol 15 (10) ◽  
pp. 1476-1479
Author(s):  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To compare the concurrent validity of session-rating of perceived exertion (sRPE) workload determined face-to-face and via an online application in basketball players. Methods: Sixteen semiprofessional, male basketball players (21.8 [4.3] y, 191.2 [9.2] cm, 85.0 [15.7] kg) were monitored during all training sessions across the 2018 (8 players) and 2019 (11 players) seasons in a state-level Australian league. Workload was reported as accumulated PlayerLoad (PL), summated-heart-rate-zones (SHRZ) workload, and sRPE. During the 2018 season, rating of perceived exertion (RPE) was determined following each session via individualized face-to-face reporting. During the 2019 season, RPE was obtained following each session via a phone-based, online application. Repeated-measures correlations with 95% confidence intervals were used to determine the relationships between sRPE collected using each method and other workload measures (PL and SHRZ) as indicators of concurrent validity. Results: Although all correlations were significant (P < .05), sRPE obtained using face-to-face reporting demonstrated stronger relationships with PL (r = .69 [.07], large) and SHRZ (r = .74 [.06], very large) compared with the online application (r = .29 [.25], small [PL] and r = .34 [.22], moderate [SHRZ]). Conclusions: Concurrent validity of sRPE workload was stronger when players reported RPE in an individualized, face-to-face manner compared with using a phone-based online application. Given the weaker relationships with other workload measures, basketball practitioners should be cautious when using player training workloads predicated on RPE obtained via online applications.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2017 ◽  
Vol 12 (10) ◽  
pp. 1370-1377 ◽  
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Hamit Cihan ◽  
Del P. Wong

Purpose: To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Methods: Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La−) were determined at the end of each SSG. Results: The SBD format elicited significantly lower %HRmax responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La− and RPE responses than SBD and CON in all formats (P < .05). Conclusions: These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.


2017 ◽  
Vol 12 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Will Vickery ◽  
Ben Dascombe ◽  
Rob Duffield

Purpose:To examine the relationship between session rating of perceived exertion (sRPE) and measures of internal and external training load (TL) in cricket batsmen and medium-fast bowlers during net-based training sessions.Methods:The internal (heart rate), external (movement demands, PlayerLoad), and technical (cricket-specific skills) loads of 30 male cricket players (age 21.2 ± 3.8 y, height 1.82 ± 0.07 m, body mass 79.0 ± 8.7 kg) were determined from net-based cricket-training sessions (n = 118). The relationships between sRPE and measures of TL were quantified using Pearson product–moment correlations respective to playing position. Stepwise multiple-regression techniques provided key internal- and external-load determinants of sRPE in cricket players.Results:Significant correlations were evident (r = -.34 to .87, P < .05) between internal and external measures of TL and sRPE, with the strongest correlations (r ≥ .62) for GPS-derived measures for both playing positions. In batsmen, stepwise multiple-regression analysis revealed that 67.8% of the adjusted variance in sRPE could be explained by PlayerLoad and high-intensity distance (y = 27.43 + 0.81 PlayerLoad + 0.29 high-intensity distance). For medium-fast bowlers, 76.3% of the adjusted variance could be explained by total distance and mean heart rate (y = 101.82 + total distance 0.05 + HRmean – 0.48).Conclusion:These results suggest that sRPE is a valid method of reporting TL among cricket batsmen and medium-fast bowlers. Position-specific responses are evident and should be considered when monitoring the TL of cricket players.


2021 ◽  
Vol 77 (1) ◽  
pp. 181-189
Author(s):  
Bruno Figueira ◽  
Bruno Gonçalves ◽  
Eduardo Abade ◽  
Rūtenis Paulauskas ◽  
Nerijus Masiulis ◽  
...  

Abstract Team sports players are required to perform repeated bouts of short-term high-intensity actions during the games. The present study aimed to examine the effects of a novel repeated sprint ability protocol (20×15 m) and compare it with the impact of a more traditional repeated sprint ability protocol (10×30 m). Twelve male elite Lithuanian basketball players (age 21.0 ± 2.0 y, body height 1.90 ± 0,07 m, body mass 86.2 ± 5.8 kg and training experience 12.0 ± 1.9 y) competing in the Lithuanian National Basketball Championship participated in this study. Participants completed three bouts of each repeated sprint protocol interspersed with 5 minutes of recovery. Results showed that the 20×15 m protocol caused a significant decrease in total sprint time (most likely; mean changes (%) with ± 90% of confidence limits, -9.4%; ± 0.7%) and a large decrease in blood lactate (most likely, -39.2%; ±12.8%) compared to the 10×30 m protocol. Despite small differences, the fatigue index presented a similar trend (possibly decrease, -23.7%; ± 38.8%). The exercise heart rate showed a very similar trend with trivial differences between the two protocols. The 20×15 m protocol presented a lower heart rate during recovery with small magnitude. Overall, the present study showed that the 20×15 m protocol seemed to be more representative of the specific basketball demands. Coaches should be aware that RSA training during the in-season may be an adequate stimulus to improve high-intensity runs and muscle power in high-level players.


Sign in / Sign up

Export Citation Format

Share Document