Menthol Mouth Rinsing and Cycling Performance in Females Under Heat Stress

Author(s):  
Erica H. Gavel ◽  
Heather M. Logan-Sprenger ◽  
Joshua Good ◽  
Ira Jacobs ◽  
Scott G. Thomas

Purpose: The effects of menthol (MEN) mouth rinse (MR) on performance, physiological, and perceptual variables in female cyclists during a 30-km independent time trial (ITT) were tested. Methods: The participants (n = 9) cycled for 30 km in hot conditions (30°C [0.6°C], 70% [1%] relative humidity, 12 [1] km/h wind speed) on 2 test occasions: with a placebo MR and with MEN MR. Handgrip and a 5-second sprint were measured before, following the first MR, and after the ITT. Ratings of perceived exertion Borg 6 to 20, thermal sensation, and thermal pleasantness were recorded every 5 km. Core temperature and heart rate were recorded throughout. Results: The ITT performance significantly improved with MEN MR by 2.3% (2.7%) relative to the placebo (62.6 [5.7] vs 64.0 [4.9] min P = .034; d = 0.85; 95% confidence interval, 0.14 to 2.8 min). The average power output was significantly higher in the MEN trial (P = .031; d = 0.87; 95% confidence interval, 0.9 to 15.0 W). No significant interaction of time and MR for handgrip (P = .581, η2 = .04) or sprint was observed (P = .365, η2 = .103). Core temperature, heart rate, ratings of perceived exertion, and thermal sensation did not significantly differ between trials at set distances (P > .05). Pleasantness significantly differed between the placebo and MEN only at 5 km, with no differences at other TT distances. Conclusion: These results suggest that a nonthermal cooling agent can improve 30-km ITT performance in female cyclists, although the improved performance with MEN MR is not due to altered thermal perception.

Biotecnia ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 31-36
Author(s):  
Ever Espino-González ◽  
María J. Muñoz-Daw ◽  
Juan M. Rivera-Sosa ◽  
María L. De la Torre-Díaz ◽  
Gabriel E. Cano-Olivas ◽  
...  

The present study aimed to evaluate the effectiveness of an amaranth-based beverage (CHO-P) on cycling performance and hydration status, despite containing a total caloric content higher than that of a commercial sports beverage (CHO-P: 52.48 kcal per 100 mL vs CHO: 24 kcal per 100 mL). In a randomized, crossover design, six cyclists performed two exercise tests separated by seven days. Each test comprised two time-trials (32.20 km and 5 km) separated by 10 min of rest. Participants consumed either an amaranth-based beverage (CHO-P; 10% and 1.5% concentrations) or a commercial sports beverage (CHO; 6%). Changes in hematocrit and body mass, ratings of perceived exertion, and average power were assessed throughout both tests. 32.2-km time-trial performance was enhanced with CHO-P compared to CHO (54.3 ± 4.1 min vs 55.6 ± 4.8 min; p<0.05). However, no other variablemeasured in this study was significantly different between beverage types. Further laboratory based research should be performed to further explore the ergogenic potential of amaranth supplementation during endurance exercise.


1996 ◽  
Vol 82 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Antonios K. Travlos ◽  
Daniel Q. Marisi

This study was conducted to investigate the influence of fitness level and gradually increased amounts of exercise on individuals' ratings of perceived exertion (RPE). 20 men served as paid subjects. They were divided into groups of high (>56 ml/kg/min.) and low fitness (<46 ml/kg/min.) according to their maximal oxygen uptake (VO2 max). Participants were required to pedal on a cycle ergometer at a progressively increased workload (every 10 min.) corresponding to 40, 50, 60, 70, and 80% of individual VO2 max values. Heart rates, RPE, and core temperatures were recorded every 5th minute after the initiation of exercising at a specific workload. Analysis indicated that, when controlling for VO2 max values, elevations of heart rate and core temperature were not affected by fitness. However, highly fit individuals perceived themselves under less exertion than did the group low in fitness. Correlations showed that, taking into consideration fitness, there is a stronger relationship between RPE and heart rate and RPE and core temperature for the highly fit individuals than for the less fit.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


Author(s):  
Kelsey Denby ◽  
Ronald Caruso ◽  
Emily Schlicht ◽  
Stephen J. Ives

Environmental heat stress poses significant physiological challenge and impairs exercise performance. We investigated the impact of wrist percooling on running performance and physiological and perceptual responses in the heat. In a counterbalanced design, 13 trained males (33 ± 9 years, 15 ± 7% body fat, and maximal oxygen consumption, VO2max 59 ± 5 mL/kg/min) completed three 10 km running time trials (27 °C, 60% relative humidity) while wearing two cooling bands: (1) both bands were off (off/off), (2) one band on (off/on), (3) both bands on (on/on). Heart rate (HR), HR variability (HRV), mean arterial pressure (MAP), core temperature (TCO), thermal sensation (TS), and fatigue (VAS) were recorded at baseline and recovery, while running speed (RS) and rating of perceived exertion (RPE) were collected during the 10 km. Wrist cooling had no effect (p > 0.05) at rest, except modestly increased HR (3–5 ∆beats/min, p < 0.05). Wrist percooling increased (p < 0.05) RS (0.25 ∆mi/h) and HR (5 ∆beats/min), but not TCO (∆ 0.3 °C), RPE, or TS. Given incomplete trials, the distance achieved at 16 min was not different between conditions (off/off 1.96 ± 0.16 vs. off/on 1.98 ± 0.19 vs. on/on 1.99 ± 0.24 miles, p = 0.490). During recovery HRV, MAP, or fatigue were unaffected (p > 0.05). We demonstrate that wrist percooling elicited a faster running speed, though this coincides with increased HR; although, interestingly, sensations of effort and thermal comfort were unaffected, despite the faster speed and higher HR.


1994 ◽  
Vol 78 (3) ◽  
pp. 779-783 ◽  
Author(s):  
William D. Russell ◽  
Douglas L. Weeks

This study assessed the effects of associative and dissociative psychological strategies of attention on heart rate and self-report ratings of perceived exertion (RPE) during cycling performance. Seven trained cyclists performed a control ride, a dissociation ride, and an association ride on a bicycle ergometer at a work rate corresponding to 75% of their maximal heart rate. For the dissociation ride, subjects watched a videotape unrelated to cycling and responded to a key word each time it occurred on tape. For the association ride, subjects focused attention on heart-rate feedback available throughout the ride. During the control ride, attentional focus was not intentionally manipulated. Analysis indicated that the deliberate application of an attentional strategy did not significantly affect heart rate or RPE scores; however, the dissociation condition yielded somewhat higher RPE scores. From a postexperimental interview, four subjects responded that the association ride was the easier to complete, while three subjects responded the control ride was the easier one, matching a possible trend in the data.


2020 ◽  
Author(s):  
Sophie Broome ◽  
Andrea Braakhuis ◽  
Cameron Mitchell ◽  
Troy Merry

Abstract BackgroundExercise increases skeletal muscle ROS production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial.MethodIn a randomised, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg·min− 1, distance cycled per week during six months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg/day) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rate of perceived exertion (RPE) were also collected.ResultsMean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, P = 0.04 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (P = 0.82) despite average power output during the time trial being higher following MitoQ supplementation (280 ± 53 W) compared to placebo (270 ± 51 W, P = 0.04). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg/ml) compared to placebo (44.7 ± 16.9 pg/ml P = 0.03).ConclusionThese data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.Trial registrationThis study was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12619000451101) on 19th March 2019.


Author(s):  
S. C. Broome ◽  
A. J. Braakhuis ◽  
C. J. Mitchell ◽  
T. L. Merry

Abstract Background Exercise increases skeletal muscle reactive oxygen species (ROS) production, which may contribute to the onset of muscular fatigue and impair athletic performance. Mitochondria-targeted antioxidants such as MitoQ, which contains a ubiquinone moiety and is targeted to mitochondria through the addition of a lipophilic triphenylphosphonium cation, are becoming popular amongst active individuals as they are designed to accumulate within mitochondria and may provide targeted protection against exercise-induced oxidative stress. However, the effect of MitoQ supplementation on cycling performance is currently unknown. Here, we investigate whether MitoQ supplementation can improve cycling performance measured as time to complete an 8 km time trial. Method In a randomized, double-blind, placebo-controlled crossover study, 19 middle-aged (age: 44 ± 4 years) recreationally trained (VO2peak: 58.5 ± 6.2 ml·kg− 1·min− 1, distance cycled per week during 6 months prior to study enrollment: 158.3 ± 58.4 km) male cyclists completed 45 min cycling at 70% VO2peak followed by an 8 km time trial after 28 days of supplementation with MitoQ (20 mg·day− 1) and a placebo. Free F2-isoprostanes were measured in plasma samples collected at rest, after 45 min cycling at 70% VO2peak and after completion of the time trial. Respiratory gases and measures of rating of perceived exertion (RPE) were also collected. Results Mean completion time for the time trial was 1.3% faster with MitoQ (12.91 ± 0.94 min) compared to placebo (13.09 ± 0.95 min, p = 0.04, 95% CI [0.05, 2.64], d = 0.2). There was no difference in RPE during the time trial between conditions (p = 0.82) despite there being a 4.4% increase in average power output during the time trial following MitoQ supplementation compared to placebo (placebo; 270 ± 51 W, MitoQ; 280 ± 53 W, p = 0.04, 95% CI [0.49, 8.22], d = 0.2). Plasma F2-isoprostanes were lower on completion of the time trial following MitoQ supplementation (35.89 ± 13.6 pg·ml− 1) compared to placebo (44.7 ± 16.9 pg·ml− 1p = 0.03). Conclusion These data suggest that MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.


Author(s):  
Sharon Gam ◽  
Kym J. Guelfi ◽  
Paul A. Fournier

Studies have reported that rinsing the mouth with a carbohydrate (CHO) solution improves cycling time-trial performance compared with rinsing with a placebo solution. However, no studies have compared the effect of mouth rinsing with a no-mouth-rinse control condition. The aim of this study was to compare the effects of a CHO mouth rinse with those of a placebo rinse and a no-rinse condition. Ten male cyclists completed three 1,000-kJ cycling time trials in a randomized, counterbalanced order. At every 12.5% of the time trial completed, participants were required to rinse their mouths for 5 s with either a 6.4% maltodextrin solution (CHO), water (WA), or no solution (CON). Heart rate and ratings of perceived exertion (RPE) were recorded every 25% of the time trial completed. Time to completion was faster in both CHO (65.7 ± 11.07 min) and CON (67.6 ± 12.68 min) than in WA (69.4 ± 13.81 min; p = .013 and p = .042, respectively). The difference between CHO and CON approached significance (p = .086). There were no differences in heart rate or RPE between any conditions. In summary, repeated mouth rinsing with water results in decreased performance relative to not rinsing at all. Adding CHO to the rinse solution appears to oppose this fall in performance, possibly providing additional benefits to performance compared with not rinsing the mouth at all. This brings into question the magnitude of the effect of CHO mouth rinsing reported in previous studies that did not include a no-rinse condition.


2019 ◽  
Vol 29 (6) ◽  
pp. 636-642 ◽  
Author(s):  
Jason P. Brandenburg ◽  
Luisa V. Giles

Blueberries are abundant with anthocyanins possessing antioxidant and anti-inflammatory properties. As these properties combat fatigue and promote recovery, blueberry supplementation may enhance performance and recovery. Thus, the objectives were to examine the effects of two blueberry supplementation protocols on running performance, physiological responses, and short-term recovery. Using a randomized, double-blind, placebo (PLA)-controlled crossover design, 14 runners completed an 8-km time trial (TT) after supplementation with 4 days of blueberries (4DAY), 4 days of a PLA, or 2 days of placebo followed by 2 days of blueberries (2DAY). Heart rate and ratings of perceived exertion were monitored during the TT. Blood lactate, vertical jump, reactive strength index, and salivary markers were assessed before and after. No significant differences were observed for time to complete the TT (PLA: 3,010 ± 459 s; 2DAY: 3,014 ± 488 s; 4DAY: 3,011 ± 423 s), heart rate, ratings of perceived exertion, or any of the salivary markers. An interaction effect (p = .027) was observed for blood lactate, with lower post-TT concentrations in 4DAY (5.4 ± 2.0 mmol/L) than PLA (6.6 ± 2.5 mmol/L; p = .038) and 2DAY (7.4 ± 3.4 mmol/L; p = .034). Post-TT decreases in vertical jump height were not different, whereas the decline in reactive strength index was less following 4DAY (−6.1% ± 13.5%) than the other conditions (PLA: −12.6% ± 10.1%; 2DAY: −11.6% ± 11.5%; p = .038). Two days of supplementation did not influence performance or physiological stress. Although 4 days of supplementation did not alter performance, it blunted the increase in blood lactate, perhaps reflecting altered lactate production and/or clearance, and offset the decrease in dynamic muscle function post-TT, as indicated by the reactive strength index differences.


Author(s):  
Luca Pollastri ◽  
Gabriele Gallo ◽  
Milena Zucca ◽  
Luca Filipas ◽  
Antonio La Torre ◽  
...  

Background: The effects of anodal transcranial direct-current stimulation (tDCS) on endurance exercise performance are not yet fully understood. Different stimulated areas and low focality of classical tDCS technique may have led to discordant results. Purpose: This study investigated the effect of a bilateral anodal high-definition tDCS (HD-tDCS) of the dorsolateral prefrontal cortex on the cycling time-trial (TT) performance and physiological and perceptual response at moderate intensity in elite cyclists. Methods: A total of 8 elite cyclists (maximal oxygen consumption: 72.2 [4.3] mL·min−1·kg−1) underwent in a double-blind, counterbalanced, and randomized order the experimental treatment (HD-tDCS) or control treatment (SHAM). After 20 minutes of receiving either HD-tDCS on the dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, the participants completed a constant-load trial (CLT) at 75% of the second ventilatory threshold. Thereafter, they performed a simulated 15-km TT. The ratings of perceived exertion, heart rate, cadence,  oxygen consumption, and respiratory exchange ratio were recorded during the CLT; the ratings of perceived exertion and heart rate were recorded during the TT. Results: The total time to complete the TT was 1.3% faster (HD-tDCS: 1212 [52] s vs SHAM: 1228 [56] s; P = .04) and associated with a higher heart rate (P < .001) and a tendency toward higher mean power output (P = .05). None of the physiological and perceptual variables measured during the CLT highlighted differences between the HD-tDCS and SHAM condition. Conclusions: The findings suggest that bilateral HD-tDCS on the dorsolateral prefrontal cortex improves cycling TT performance without altering the physiological and perceptual response at moderate intensity, indicating that an upregulation of the prefrontal cortex could enhance endurance exercise performance.


Sign in / Sign up

Export Citation Format

Share Document