scholarly journals Relationships Between Fast Bowling Technique and Ball Release Speed in Cricket

2013 ◽  
Vol 29 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Peter J. Worthington ◽  
Mark A. King ◽  
Craig A. Ranson

The aim of this study was to identify the key aspects of technique that characterize the fastest bowlers. Kinematic data were collected for 20 elite male fast bowlers with 11 kinematic parameters calculated, describing elements of fast bowling technique that have previously been linked to ball release speed. Four technique variables were identified as being the best predictors of ball release speed, explaining 74% of the observed variation in ball release speed. The results indicate that the fastest bowlers have a quicker run-up and maintain a straighter knee throughout the front foot contact phase. The fastest bowlers were also observed to exhibit larger amounts of upper trunk flexion up to ball release and to delay the onset of arm circumduction. This study identifies those technique variables that best explain the differences in release speeds among fast bowlers. These results are likely to be useful in both the coaching and talent identification of fast bowlers.

2010 ◽  
Vol 5 (4) ◽  
pp. 469-483 ◽  
Author(s):  
Herbert Wagner ◽  
Michael Buchecker ◽  
Serge P. von Duvillard ◽  
Erich Müller

Purpose:The aims of the present study were: (1) to compare the differences in the ball release speed and throwing accuracy between the ABOVE and SIDE throw; (2) to analyze kinematic differences of these two throwing techniques; and (3) to give practical applications to team handball coaches and players.Methods:Ball release speed, throwing accuracy, and kinematics were measured via the Vicon MX 13 (Vicon Peak, Oxford, UK) from 12 male elite right-handed team handball players.Results:Results of our study suggest that the two throwing techniques differ significantly (P < .0073) in the angles and/or angular velocities of the trunk (flexion, left tilt and rotation) and shoulder (flexion and abduction) of the throwing arm that result in a significantly different ball release speed (1.4 ± 0.8 m/s; P < .001) and that throwing accuracy was not significantly different.Conclusion:Our results indicated that the different position of the hand at ball release of the ABOVE and SIDE throws is primarily caused by different trunk flexion and tilt angles that lead to differences in ball release speed but not in throwing accuracy, and that the participants try to move their throwing arm similarly in both throwing techniques.


2017 ◽  
Vol 12 (6) ◽  
pp. 719-727 ◽  
Author(s):  
Ed Maunder ◽  
Andrew E. Kilding ◽  
Simeon P. Cairns

The manifestations of fatigue during fast bowling in cricket were systematically evaluated using subjective reports by cricket experts and quantitative data published from scientific studies. Narratives by international players and team physiotherapists were sourced from the Internet using criteria for opinion-based evidence. Research articles were evaluated for high-level fast bowlers who delivered 5- to 12-over spells with at least 1 quantitative fatigue measure. Anecdotes indicate that a long-term loss of bowling speed, tiredness, mental fatigue, and soreness occur. Scientific research shows that ball-release speed, bowling accuracy, bowling action (technique), run-up speed, and leg-muscle power are generally well maintained during bowling simulations. However, bowlers displaying excessive shoulder counterrotation toward the end of a spell also show a fall in accuracy. A single notable study involving bowling on 2 successive days in the heat showed reduced ball-release speed (–4.4 km/h), run-up speed (–1.3 km/h), and accuracy. Moderate to high ratings of perceived exertion transpire with simulations and match play (6.5–7.5 Borg CR-10 scale). Changes of blood lactate, pH, glucose, and core temperature appear insufficient to impair muscle function, although several potential physiological fatigue factors have not been investigated. The limited empirical evidence for bowling-induced fatigue appears to oppose player viewpoints and indicates a paradox. However, this may not be the case since bowling simulations resemble the shorter formats of the game but not multiday (test match) cricket or the influence of an arduous season, and comments of tiredness, mental fatigue, and soreness signify phenomena different from what scientists measure as fatigue.


Retos ◽  
2021 ◽  
Vol 43 ◽  
pp. 256-263
Author(s):  
Pedro Grenha ◽  
José Moura ◽  
Eduardo Guimarães ◽  
Pedro Fonseca ◽  
Filipa Sousa ◽  
...  

  The current study intended to investigate the effects of a self-training program on shooting performance and kinematics of young basketball players. Fourteen male basketball players aged 16.64±.50 years, divided in control group (n=7) and experimental group (n=7), were assessed on free-throw, two-point and three-point shooting performance and on four kinematic parameters (release height, release angle, release speed and trajectory variability), before and after a five-week training program. During the five-week period, the experimental group accomplished a shooting training program that included 600 shots per week. Both groups maintained their regular basketball practice. The results show that the experimental group significantly increased their shooting performance on three-point (p<.05) and on free-throw (p<.05). Moreover, a significant decrease in three-point ball release angle (p<.05) and a significant increase in free-throw ball release height (p<.05) were observed in the experimental group, while the control group significantly increased the two-point ball release speed (p<.05). In conclusion, self-shooting basketball practice, in addition to formal practice, significantly improves shooting performance of young basketball players. In contrast, the reduced changes on the analysed kinematic parameters caused by the self-training program are most likely a consequence of the absence of external feedback during training process.  Resumen. El propósito del presente estudio fue investigar los efectos de un programa de autoentrenamiento en el rendimiento y cinemática de tiro de jóvenes jugadores de baloncesto. Catorce jugadores de baloncesto masculinos, de 16.64±0.50 años, divididos en grupo de control (n=7) y grupo experimental (n=7), fueron evaluados en el rendimiento de tiro libre, de dos puntos y de tres puntos y en cuatro parámetros cinemáticos (altura de liberación, ángulo de liberación, velocidad de liberación y variabilidad de la trayectoria), antes y después de un programa de entrenamiento de cinco semanas. Durante el período de cinco semanas, el grupo experimental realizó un programa de entrenamiento de tiro que incluía 600 tiros por semana. Ambos grupos mantuvieron su práctica regular de baloncesto. Los resultados muestran que el grupo experimental aumentó significativamente su rendimiento en el tiro de tres puntos (p<.05) y en el tiro libre (p<.05). Además, se observó, en el grupo experimental, una disminución significativa del ángulo de liberación en el tiro de tres puntos (p<.05) y un aumento significativo de la altura de liberación en el tiro libre (p<.05), mientras que el grupo de control aumentó significativamente la velocidad de liberación en el tiro de dos pontos (p<.05). En conclusión, la autopráctica de tiro en baloncesto, además de la práctica formal, mejora significativamente el rendimiento de tiro de los jugadores jóvenes. Por el contrario, los cambios reducidos en los parámetros cinemáticos analizados son probablemente una consecuencia de la ausencia de corrección externa durante el proceso de autoentrenamiento.


1998 ◽  
Vol 14 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Steven W. Barrentine ◽  
Naiquan Zheng ◽  
James R. Andrews

The purpose of this study was to establish and compare kinematic data among four groups of collegiate pitchers who threw the fastball (FA), change-up (CH), curveball (CU), and slider (SL). Twenty-six kinematic parameters at lead foot contact, during the arm-cocking and arm acceleration phases, and at ball release were measured for 16 collegiate baseball pitchers. Approximately 60% of these parameters showed significant differences among the four pitch variations. The greatest number of differences (14 of 26) occurred between the FA and CH groups, while the fewest differences (2 of 26) occurred between the FA and SL groups. The CH group had the smallest knee and elbow flexion at lead foot contact and the greatest knee and elbow flexion at ball release. During the arm-cocking and arm acceleration phases, peak shoulder, elbow, and trunk angular velocities were generally greatest in the FA and SL groups and smallest in the CH group. At ball release the CH group had the most upright trunk and the greatest horizontal shoulder adduction, while the CU group had the most lateral trunk tilt. Understanding kinematic differences can help a pitcher select and learn different pitches and can help a batter learn how to identify different pitches.


Author(s):  
Simon A. Feros ◽  
Damon A. Bednarski ◽  
Peter J. Kremer

Purpose: To investigate the relationship between prescribed (preDI), perceived (perDI), and actual delivery intensity (actDI) in cricket pace bowling. Methods: Fourteen male club-standard pace bowlers (mean [SD]: age 24.2 [3.2] y) completed 1 bowling session comprising 45 deliveries. The first 15 deliveries composed the warm-up, where participants bowled 3 deliveries each at a preDI of 60%, 70%, 80%, 90%, and 95%. Bowlers reported the perDI after each delivery. The fastest delivery in the session was used as a reference to calculate relative ball-release speed for the warm-up deliveries, with this measure representing the actDI. Ball-release speed was captured by a radar gun. Results: For perDI, there was a very large relationship with preDI (rs = .90, P < .001). Similarly, for actDI, there was a large relationship with preDI (rs = .52, P < .001). Higher concordance was observed between perDI and preDI from 60% to 80% preDI. A plateau was observed for actDI from 70% to 95% preDI. Conclusions: The relationship between perDI and actDI was very large and large with respect to preDI, indicating that both variables can be used to monitor delivery intensity against the planned intensity and thus ensure healthy training adaptation. The optimal preDI that allowed pace bowlers to operate at submaximal perDI but still achieve close to maximal ball-release speeds was 70%. Bowling at the optimal preDI may significantly reduce the psychophysiological load per delivery in exchange for a trivial loss in ball-release speed.


2013 ◽  
Vol 37 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul J Taylor ◽  
Lindsay Bottoms

Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.


Sports ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 200
Author(s):  
Samuel J. Callaghan ◽  
Robert G. Lockie ◽  
Warren A. Andrews ◽  
Walter Yu ◽  
Robert F. Chipchase ◽  
...  

Pace bowlers must often perform extended bowling spells with maximal ball release speed (BRS) while targeting different delivery lengths when playing a multi-day match. This study investigated the effect of an eight over spell upon pace bowling biomechanics and performance at different delivery lengths. Nine male bowlers (age = 18.8 ± 1.7 years) completed an eight over spell, while targeting different lengths (short: 7–10 m, good: 4–7 m, full: 0–4 m from the batter’s stumps, respectively) in a randomized order. Trunk, knee and shoulder kinematics and ground reaction forces at front foot contact (FFC), as well as run-up velocity and BRS were measured. Paired sample t-tests (p ≤ 0.01), Hedges’ g effect sizes, and statistical parametrical mapping were used to assess differences between mean variables from the first and last three overs. No significant differences (p = 0.05–0.98) were found in any discrete or continuous variables, with the magnitude of difference being trivial-to-medium (g = 0.00–0.73) across all variables. Results suggest pace bowlers sustain BRS through a single eight over spell while tolerating the repeatedly high whole-body biomechanical loads as suggested by maintaining the kinematics or technique at the assessed joints during FFC. Practically, the findings are advantageous for bowling performance and support current bowling load monitoring practices.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Michela Goffredo ◽  
Stefano Mazzoleni ◽  
Annalisa Gison ◽  
Francesco Infarinato ◽  
Sanaz Pournajaf ◽  
...  

Background. Upper limb robot-assisted therapy (RT) provides intensive, repetitive, and task-specific treatment, and its efficacy for stroke survivors is well established in literature. Biomechanical data from robotic devices has been widely employed for patient’s assessment, but rarely it has been analysed for tracking patient progress during RT. The goal of this retrospective study is to analyse built-in kinematic data registered by a planar end-effector robot for assessing the time course of motor recovery and patient’s workspace exploration skills. A comparison of subjects having mild and severe motor impairment has been also conducted. For that purpose, kinematic data recorded by a planar end-effector robot have been processed for investigating how motor performance in executing point-to-point trajectories with different directions changes during RT.Methods. Observational retrospective study of 68 subacute stroke patients who conducted 20 daily sessions of upper limb RT with the InMotion 2.0 (Bionik Laboratories, USA): planar point-to-point reaching tasks with an “assist as needed” strategy. The following kinematic parameters (KPs) were computed for each subject and for each point-to-point trajectory executed during RT: movement accuracy, movement speed, number of peak speed, and task completion time. The Wilcoxon signed-rank tests were used with clinical outcomes. the Friedman test and post hoc Conover’s test (Bonferroni’s correction) were applied to KPs. A secondary data analysis has been conducted by comparing patients having different severities of motor impairment. The level of significance was set atpvalue < 0.05.Results. At the RT onset, the movements were less accurate and smoothed, and showed higher times of execution than those executed at the end of treatment. The analysis of the time course of KPs highlighted that RT seems to improve the motor function mainly in the first sessions of treatment: most KPs show significant intersession differences during the first 5/10 sessions. Afterwards, no further significant variations occurred. The ability to perform movements away from the body and from the hemiparetic side remains more challenging. The results obtained from the data stratification show significant differences between subjects with mild and severe motor impairment.Conclusion. Significant improvements in motor performance were registered during the time course of upper limb RT in subacute stroke patients. The outcomes depend on movement direction and motor impairment and pave the way to optimize healthcare resources and to design patient-tailored rehabilitative protocols.


2010 ◽  
Vol 26 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Miroslav Janura ◽  
Lee Cabell ◽  
Milan Elfmark ◽  
František Vaverka

The athlete’s inrun position affects the outcome for take-off in ski jumping. The purpose of this study was to examine the kinematic parameters between skiers’ adjacent body segments during their first straight path of the inrun. Elite ski jumpers participated in the study at the World Cup events in Innsbruck, Austria, during the years 1992 through 2001. A video image was taken at a right angle to the tracks of the K-110 (meter) jumping hill. Kinematic data were collected from the lower extremities and trunk of the athletes. Findings indicated that jumpers had diminished ankle and knee joint angles and increased trunk and hip angles over the 10 years. In recent years, the best athletes achieved a further length of their jumps, while they experienced slower inrun average velocity. These results are perhaps explained by several possible contributing factors, such as new technique of the jumper’s body kinematics, advancements in equipment technology, and somatotype of the jumpers.


Sign in / Sign up

Export Citation Format

Share Document