scholarly journals The Appropriateness of the Helical Axis Technique and Six Available Cardan Sequences for the Representation of 3-D Lead Leg Kinematics During the Fencing Lunge

2013 ◽  
Vol 37 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul J Taylor ◽  
Lindsay Bottoms

Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.

2013 ◽  
Vol 103 (5) ◽  
pp. 394-399 ◽  
Author(s):  
Alfred Gatt ◽  
Nachiappan Chockalingam ◽  
Owen Falzon

Background: Although assessment of passive maximum foot dorsiflexion angle is performed routinely, there is a paucity of information regarding adolescents’ foot and foot segment motion during this procedure. There are currently no trials investigating the kinematics of the adolescent foot during passive foot dorsiflexion. Methods: A six-camera optoelectronic motion capture system was used to collect kinematic data using the Oxford Foot Model. Eight female amateur gymnasts 11 to 16 years old (mean age, 13.2 years; mean height, 1.5 m) participated in the study. A dorsiflexing force was applied to the forefoot until reaching maximum resistance with the foot placed in the neutral, pronated, and supinated positions in random order. The maximum foot dorsiflexion angle and the range of movement of the forefoot to hindfoot, tibia to forefoot, and tibia to hindfoot angles were computed. Results: Mean ± SD maximum foot dorsiflexion angles were 36.3° ± 7.2° for pronated, 36.9° ± 4.0° for neutral, and 33.0° ± 4.9° for supinated postures. One-way repeated-measures analysis of variance results were nonsignificant among the 3 groups (P = .70), as were the forefoot to tibia angle and hindfoot to tibia angle variations (P = .091 and P = .188, respectively). Forefoot to hindfoot angle increased with the application of force, indicating that in adolescents, the forefoot does not lock at any particular posture as portrayed by the traditional Rootian paradigm. Conclusions: Participants had very flexible foot dorsiflexion, unlike those in another study assessing adolescent athletes. This finding, together with nonsignificant statistical results, implies that foot dorsiflexion measurement may be performed at any foot posture without notably affecting results. (J Am Podiatr Med Assoc 103(5): 394–399, 2013)


2014 ◽  
Vol 15 (4) ◽  
Author(s):  
Jonathan Sinclair ◽  
Hayley Vincent ◽  
Paul John Taylor ◽  
Jack Hebron ◽  
Howard Thomas Hurst ◽  
...  

AbstractPurpose. Cycling has been shown to be associated with a high incidence of chronic pathologies. Foot orthoses are frequently used by cyclists in order to reduce the incidence of chronic injuries. The aim of the current investigation was to examine the influence of different varus orthotic inclines on the three-dimensional kinematics of the lower extremities during the pedal cycle. Methods. Kinematic information was obtained from ten male cyclists using an eight-camera optoelectronic 3-D motion capture system operating at 250 Hz. Participants cycled with and without orthotic intervention at three different cadences (70, 90 and 110 RPM). The orthotic device was adjustable and four different wedge conditions (0 mm - no orthotic, 1.5 mm, 3.0 mm and 4.5 mm) were examined. Two-way repeated measures ANOVAs were used to compare the kinematic parameters obtained as a function of orthotic inclination and cadence. Participants were also asked to subjectively rate their comfort in cycling using each of the four orthotic devices on a 10-point Likert scale. Results. The kinematic analysis indicated that the orthotic device had no significant influence at any of the three cadences. Analysis of subjective preferences showed a clear preference for the 0 mm, no orthotic, condition. Conclusions. This study suggests that foot orthoses do not provide any protection from skeletal malalignment issues associated with the aetiology of chronic cycling injuries.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haeun Yum ◽  
Hyang Kim ◽  
Taeyong Lee ◽  
Moon Seok Park ◽  
Seung Yeol Lee

Abstract Background Stationary cycling is commonly used for postoperative rehabilitation of physical disabilities; however, few studies have focused on the three-dimensional (3D) kinematics of rehabilitation. This study aimed to elucidate the three-dimensional lower limb kinematics of people with healthy musculoskeletal function and the effect of sex and age on kinematics using a controlled bicycle configuration. Methods Thirty-one healthy adults participated in the study. The position of the stationary cycle was standardized using the LeMond method by setting the saddle height to 85.5% of the participant’s inseam. The participants maintained a pedaling rate of 10–12 km/h, and the average value of three successive cycles of the right leg was used for analysis. The pelvis, hip, knee, and ankle joint motions during cycling were evaluated in the sagittal, coronal, and transverse planes. Kinematic data were normalized to 0–100% of the cycling cycle. The Kolmogorov-Smirnov test, Mann-Whitney U test, Kruskal-Wallis test, and k-fold cross-validation were used to analyze the data. Results In the sagittal plane, the cycling ranges of motion (ROMs) were 1.6° (pelvis), 43.9° (hip), 75.2° (knee), and 26.9° (ankle). The coronal plane movement was observed in all joints, and the specific ROMs were 6.6° (knee) and 5.8° (ankle). There was significant internal and external rotation of the hip (ROM: 11.6°), knee (ROM: 6.6°), and ankle (ROM: 10.3°) during cycling. There was no difference in kinematic data of the pelvis, hip, knee, and ankle between the sexes (p = 0.12 to 0.95) and between different age groups (p = 0.11 to 0.96) in all anatomical planes. Conclusions The kinematic results support the view that cycling is highly beneficial for comprehensive musculoskeletal rehabilitation. These results might help clinicians set a target of recovery ROM based on healthy and non-elite individuals and issue suitable guidelines to patients.


2019 ◽  
Vol 90 (1) ◽  
pp. 118-124
Author(s):  
Joanne Au ◽  
Li Mei ◽  
Florence Bennani ◽  
Austin Kang ◽  
Mauro Farella

ABSTRACT Objective To assess the immediate response of lips in three dimensions (3D) resulting from simulated maxillary incisor advancement. Materials and Methods Incremental maxillary incisor advancement was simulated by placing wax of increasing thickness (+2 mm, +4 mm, +6 mm) on the incisors of 20 participants, and the induced lip changes were recorded using 3D stereophotogrammetry. The induced displacement of lip landmarks was quantified using 3D image analysis software. Data were analyzed using a repeated-measures analysis of variance (ANOVA) after adjusting for age and sex of the study participants. Results A large interindividual variation in lip response to simulated incisor advancement was observed. A significant overall effect on 3D lip changes was found for increasing values of simulated incisor advancement (F = 13.2; P < .001) as well as significant differences between anatomical landmarks of the lip (F = 7.4; P < .01). Most points moved outward and anterosuperiorly, except the midpoint and corners of the lip. Greatest movement was observed in the sagittal plane, followed by the vertical and transverse planes. Conclusions Maxillary incisor advancement significantly affects upper lip change in three planes of space: particularly the anteroposterior plane, in which the response to simulated advancement appears to be nonlinear.


2021 ◽  
Author(s):  
Haeun Yum ◽  
Hyang Kim ◽  
Taeyong Lee ◽  
Moon Seok Park ◽  
Seung Yeol Lee

Abstract Background: Stationary cycling is commonly used for postoperative rehabilitation of physical disabilities, but few studies have focused on the three-dimensional (3D) kinematics of rehabilitation. This study aimed to elucidate the three-dimensional lower limb kinematics of musculoskeletally healthy people and the effect of sex and age on kinematics using a controlled bicycle configuration.Methods: Thirty-one healthy adults participated in the study. The stationary cycle positioning was standardized using the LeMond method by setting the saddle height to 85.5% of the participant’s inseam. The participants maintained a pedaling rate of 10–12 km/h, and the average value of three successive cycles of the right leg was used for analysis. The pelvis, hip, knee, and ankle joint motions during cycling were evaluated in the sagittal, coronal, and transverse planes. Kinematic data were normalized to 0–100% of the cycling cycle. The Kolmogorov-Smirnov test, Mann-Whitney U test, Kruskal-Wallis test, and k-fold cross-validation were used to analyze the data.Results: In the sagittal plane, the cycling ranges of motion (ROMs) were 1.6° (pelvis), 43.9° (hip), 75.2° (knee), and 26.9° (ankle). The coronal plane movement was observed in all joints, and the specific ROMs were 6.6° (knee) and 5.8° (ankle). There was significant internal and external rotation of the hip (ROM: 11.6°), knee (ROM: 6.6°), and ankle (ROM: 10.3°) during cycling. There was no difference in kinematic data of the pelvis, hip, knee, and ankle between sexes (p = 0.12 to 0.95) and among ages (p = 0.11 to 0.96) in all anatomical planes.Conclusions: The kinematic results support the assertion that cycling is highly recommended for comprehensive musculoskeletal rehabilitation. These results may help clinicians choose a target recovery ROM based on healthy and non-elite individuals and issue suitable guidelines to patients.


2020 ◽  
Author(s):  
Simon M. Walker ◽  
Graham K. Taylor

Blade element modelling provides a quick analytical method for estimating the aerodynamic forces produced during insect flight, but such models have yet to be tested rigorously using kinematic data recorded from free-flying insects. This is largely because of the paucity of detailed free-flight kinematic data, but also because analytical limitations in existing blade element models mean that they cannot incorporate the complex three-dimensional movements of the wings and body that occur during insect flight. Here, we present a blade element model with empirically-fitted aerodynamic force coefficients that incorporates the full three-dimensional wing kinematics of manoeuvring Eristalis hoverflies, including torsional deformation of their wings. The two free parameters were fitted to a large free-flight dataset comprising N = 26, 541 wingbeats, and the fitted model captured approximately 80% of the variation in the stroke-averaged forces in the sagittal plane. We tested the robustness of the model by subsampling the data, and found little variation in the parameter estimates across subsamples comprising 10% of the flight sequences. The simplicity and generality of the model that we present is such that it can be readily applied to kinematic datasets from other insects, and also used for the study of insect flight dynamics.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Simon M. Walker ◽  
Graham K. Taylor

Blade element modelling provides a quick analytical method for estimating the aerodynamic forces produced during insect flight, but such models have yet to be tested rigorously using kinematic data recorded from free-flying insects. This is largely because of the paucity of detailed free-flight kinematic data, but also because analytical limitations in existing blade element models mean that they cannot incorporate the complex three-dimensional movements of the wings and body that occur during insect flight. Here, we present a blade element model with empirically fitted aerodynamic force coefficients that incorporates the full three-dimensional wing kinematics of manoeuvring Eristalis hoverflies, including torsional deformation of their wings. The two free parameters were fitted to a large free-flight dataset comprising N = 26 541 wingbeats, and the fitted model captured approximately 80% of the variation in the stroke-averaged forces in the sagittal plane. We tested the robustness of the model by subsampling the data, and found little variation in the parameter estimates across subsamples comprising 10% of the flight sequences. The simplicity and generality of the model that we present is such that it can be readily applied to kinematic datasets from other insects, and also used for the study of insect flight dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pieter-Jan Verhelst ◽  
H. Matthews ◽  
L. Verstraete ◽  
F. Van der Cruyssen ◽  
D. Mulier ◽  
...  

AbstractAutomatic craniomaxillofacial (CMF) three dimensional (3D) dense phenotyping promises quantification of the complete CMF shape compared to the limiting use of sparse landmarks in classical phenotyping. This study assesses the accuracy and reliability of this new approach on the human mandible. Classic and automatic phenotyping techniques were applied on 30 unaltered and 20 operated human mandibles. Seven observers indicated 26 anatomical landmarks on each mandible three times. All mandibles were subjected to three rounds of automatic phenotyping using Meshmonk. The toolbox performed non-rigid surface registration of a template mandibular mesh consisting of 17,415 quasi landmarks on each target mandible and the quasi landmarks corresponding to the 26 anatomical locations of interest were identified. Repeated-measures reliability was assessed using root mean square (RMS) distances of repeated landmark indications to their centroid. Automatic phenotyping showed very low RMS distances confirming excellent repeated-measures reliability. The average Euclidean distance between manual and corresponding automatic landmarks was 1.40 mm for the unaltered and 1.76 mm for the operated sample. Centroid sizes from the automatic and manual shape configurations were highly similar with intraclass correlation coefficients (ICC) of > 0.99. Reproducibility coefficients for centroid size were < 2 mm, accounting for < 1% of the total variability of the centroid size of the mandibles in this sample. ICC’s for the multivariate set of 325 interlandmark distances were all > 0.90 indicating again high similarity between shapes quantified by classic or automatic phenotyping. Combined, these findings established high accuracy and repeated-measures reliability of the automatic approach. 3D dense CMF phenotyping of the human mandible using the Meshmonk toolbox introduces a novel improvement in quantifying CMF shape.


2019 ◽  
Author(s):  
Bradly Alicea ◽  
Corey Bohil ◽  
Frank Biocca ◽  
Charles Owen

Our objective was to focus on linkages between the process of learning and memory and the placement of objects within an array of targets in a virtual workspace. Participants were instructed to place virtual objects serially within a three-dimensional target array. One phase presented each target sequentially, and required participants to make timed ballistic arm movements. The other phase presented all nine targets simultaneously, which required ballistic arm movement towards the correct target location as recalled from the learning phase. Movement time and accuracy were assessed using repeated-measures ANOVA, a hierarchical cluster analysis, and a multiple linear regression. Collectively, this revealed numerous speed and accuracy advantages and disadvantages for various positional combinations. Upper positions universally yielded longer movement times and larger error measurements. Individual ability for mental rotation combined with task learning over a fixed training interval was found to predict accuracy for specific locations. The prediction that location influences movement speed and accuracy was supported, but with some caveats. These results may be particularly useful in the design of instructor stations and other hybrid physical-virtual workspaces.


2020 ◽  
Author(s):  
Peyman Bakhshayesh ◽  
Ugwunna Ihediwa ◽  
Sukha Sandher ◽  
Alexandros Vris ◽  
Nima Heidari ◽  
...  

Abstract Introduction: Rotational deformities following IM nailing of tibia has a reported incidence of as high as 20%. Common techniques to measure deformities following IM nailing of tibia are either based on clinical assessment, plain X-rays or CT-scan comparing the treated leg with the uninjured contralateral side. All these techniques are based on examiners manual calculation inherently subject to bias. Following our previous rigorous motion analysis and symmetry studies on hemi pelvises, femurs and orthopaedic implants, we aimed to introduce a novel fully digital technique to measure rotational deformities in the lower legs.Material and Methods: Following formal institutional approval from the Imperial College, CT images of 10 pairs of human lower legs were retrieved. Images were anonymized and uploaded to a research server. Three dimensional CT images of the lower legs were bilaterally reconstructed. The mirrored images of the left side were merged with the right side proximally as stationary and distally as moving objects. Discrepancies in translation and rotation were automatically calculated.Results: Our study population had a mean age of 54 ± 20 years. There were six males and four females. We observed a greater variation in translation (mm) of Centre of Mass (COM) in sagittal plane (CI: -2.959--.292) which was also presented as rotational difference alongside the antero-posterior direction or Y axis (CI: .370-1.035). In other word the right lower legs in our study were more likely to be in varus compared to the left side. However, there were no statistically significant differences in coronal or axial planes.Conclusion: Using our proposed fully digital technique we found that lower legs of the human adults were symmetrical in axial and coronal plane. We found sagittal plane differences which need further addressing in future using bigger sample size. Our novel recommended technique is fully digital and commercially available. This new technique can be useful in clinical practice addressing rotational deformities following orthopaedic surgical intervention. This new technique can substitute the previously introduced techniques.


Sign in / Sign up

Export Citation Format

Share Document