scholarly journals Emotion Regulation and Sport Performance

2014 ◽  
Vol 36 (4) ◽  
pp. 401-412 ◽  
Author(s):  
Christopher R. D. Wagstaff

This study used a single-blind, within-participant, counterbalanced, repeated-measures design to examine the relationship between emotional self-regulation and sport performance. Twenty competitive athletes completed four laboratory-based conditions; familiarization, control, emotion suppression, and nonsuppression. In each condition participants completed a 10-km cycling time trial requiring self-regulation. In the experimental conditions participants watched an upsetting video before performing the cycle task. When participants suppressed their emotional reactions to the video (suppression condition) they completed the cycling task slower, generated lower mean power outputs, and reached a lower maximum heart rate and perceived greater physical exertion than when they were given no self-regulation instructions during the video (nonsuppression condition) and received no video treatment (control condition). The findings suggest that emotional self-regulation resource impairment affects perceived exertion, pacing and sport performance and extends previous research examining the regulation of persistence on physical tasks. The results are discussed in line with relevant psychophysiological theories of self-regulation and fatigue and pertinent potential implications for practice regarding performance and well-being are suggested.

2020 ◽  
Vol 15 (9) ◽  
pp. 1303-1308
Author(s):  
Marco J. Konings ◽  
Florentina J. Hettinga

Purpose: The behavior of an opponent has been shown to alter pacing and performance. To advance our understanding of the impact of perceptual stimuli such as an opponent on pacing and performance, this study examined the effect of a preexercise cycling protocol on exercise regulation with and without an opponent. Methods: Twelve trained cyclists performed 4 experimental, self-paced 4-km time-trial conditions on an advanced cycle ergometer in a randomized, counterbalanced order. Participants started the time trial in rested state (RS) or performed a 10-min cycling protocol at 67% peak power output (CP) before the time trial. During the time trials, participants had to ride alone (NO) or against a virtual opponent (OP). The experimental conditions were (1) RS-NO, (2) RS-OP, (3) CP-NO, and (4) CP-OP. Repeated-measures analyses of variance (P < .05) were used to examine differences in pacing and performance in terms of power output. Results: A faster pace was adopted in the first kilometer during RS-OP (318 [72] W) compared with RS-NO (291 [81] W; P = .03), leading to an improved finishing time during RS-OP compared with RS-NO (P = .046). No differences in either pacing or performance were found between CP-NO and CP-OP. Conclusions: The evoked response by the opponent to adopt a faster initial pace in the 4-km time trial disappeared when cyclists had to perform a preceding cycling protocol. The outcomes of this study highlight that perceived exertion alters the responsiveness to perceptual stimuli of cyclists during competition.


2018 ◽  
Vol 13 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Marco J. Konings ◽  
Jordan Parkinson ◽  
Inge Zijdewind ◽  
Florentina J. Hettinga

Purpose: Performing against a virtual opponent has been shown to invite a change in pacing and improve time-trial (TT) performance. This study explored how this performance improvement is established by assessing changes in pacing, neuromuscular function, and perceived exertion. Methods: After a peak-power-output test and a familiarization TT, 12 trained cyclists completed two 4-km TTs in randomized order on a Velotron cycle ergometer. TT conditions were riding alone (NO) and riding against a virtual opponent (OP). Knee-extensor performance was quantified before and directly after the TT using maximal voluntary contraction force (MVC), voluntary activation (VA), and potentiated doublet-twitch force (PT). Differences between the experimental conditions were examined using repeated-measures ANOVAs. Linear-regression analyses were conducted to associate changes in pacing to changes in MVC, VA, and PT. Results: OP was completed faster than NO (mean power output OP 289.6 ± 56.1 vs NO 272.2 ± 61.6 W; P = .020), mainly due to a faster initial pace. This was accompanied by a greater decline in MVC (MVC pre vs post −17.5% ± 12.4% vs −11.4% ± 10.9%, P = .032) and PT (PT pre vs post −23.1% ± 14.0% vs −16.2% ±11.4%, P = .041) after OP than after NO. No difference between conditions was found for VA (VA pre vs post −4.9% ± 6.7% vs −3.4% ± 5.0%, P = .274). Rating of perceived exertion did not differ between OP and NO. Conclusion: The improved performance when racing against a virtual opponent was associated with a greater decline in voluntary and evoked muscle force than riding alone, without a change in perceived exertion, highlighting the importance of human–environment interactions in addition to one’s internal state for pacing regulation and performance.


Author(s):  
Jolie Haun ◽  
Nitin Patel ◽  
Gary Schwartz ◽  
Cheryl Ritenbaugh

Abstract: The purpose of this study was to evaluate the short-term effects of massage therapy using gas discharge visualization (GDV), a computerized biophysical electrophoton capture (EPC), in tandem with traditional self-report measures to evaluate the use of GDV measurement to assess the bioenergetic whole-person effects of massage therapy.: This study used a single treatment group, pre–post-repeated measures design with a sample of 23 healthy adults. This study utilized a single 50-min full-body relaxation massage with participants. GDV measurement method, an EPC, and traditional paper-based measures evaluating pain, stress, muscle tension, and well-being were used to assess intervention outcomes.: Significant differences were found between pre- and post-measures of well-being, pain, stress, muscle tension, and GDV parameters. Pearson correlations indicate the GDV measure is correlated with pain and stress, variables that impact the whole person.: This study demonstrates that GDV parameters may be used to indicate significant bioenergetic change from pre- to post-massage. Findings warrant further investigation with a larger diverse sample size and control group to further explore GDV as a measure of whole-person bioenergetic effects associated with massage.


2021 ◽  
Vol 5 (1) ◽  
pp. 111
Author(s):  
Laura Sokal ◽  
Brianne Bartel ◽  
Taylor Martin

Post-secondary institutions across North America have adopted animal-assisted activities as a way to promote better mental health in their students. The current research study of 242 Canadian college and university students sought to contribute to our collective understanding of the aspects of the programs and characteristics of students that are related to promotion of better mental health in post-secondary students including decreased stress, and increased happiness and well-being. Results of a repeated measures design showed that students demonstrated greater positive effects on stress, happiness, and well-being when they touched dogs as compared to when they observed them. Furthermore, positive mental health outcomes were correlated with greater durations of contact as well as with higher levels of animal affiliation in students. Implications for post-secondary institutions are discussed. 


2020 ◽  
Vol 34 (3) ◽  
pp. 471-481
Author(s):  
Gabriel Barreto ◽  
Rafael Pires da Silva ◽  
Guilherme Yamaguchi ◽  
Luana Farias de Oliveira ◽  
Vitor de Salles Painelli ◽  
...  

Caffeine has been shown to increase anaerobic energy contribution during short-duration cycling time-trials (TT) though no information exists on whether caffeine alters energy contribution during more prolonged, aerobic type TTs. The aim of this study was to determine the effects of caffeine supplementation on longer and predominantly aerobic exercise. Fifteen recreationally-trained male cyclists (age 38±8 y, height 1.76±0.07 m, body mass 72.9±7.7 kg) performed a ~30 min cycling TT following either 6 mg·kg-1BM caffeine (CAF) or placebo (PLA) supplementation, and one control (CON) session without supplementation, in a double- -blind, randomised, counterbalance and cross-over design. Mean power output (MPO) was recorded as the outcome measure. Respiratory values were measured throughout exercise for the determination of energy system contribution. Data were analysed using mixed-models. CAF improved mean MPO compared to CON (P=0.01), and a trend towards an improvement compared to PLA (P=0.07); there was no difference in MPO at any timepoint throughout the exercise between conditions. There was a main effect of Condition (P=0.04) and Time (P<0.0001) on blood lactate concentration, which tended to be higher in CAF vs. both PLA and CON (Condition effect, both P=0.07). Ratings of perceived exertion increased over time (P<0.0001), with no effect of Condition or interaction (both P>0.05). Glycolytic energy contribution was increased in CAF compared to CON and PLA (both P<0.05), but not aerobic or ATP-CP (both P>0.05). CAF improved aerobic TT performance compared to CON, which could be explained by increased glycolytic energy contribution.


2020 ◽  
pp. 1-5
Author(s):  
Megan Wagner ◽  
Kevin D. Dames

Context: Bodyweight-supporting treadmills are popular rehabilitation tools for athletes recovering from impact-related injuries because they reduce ground reaction forces during running. However, the overall metabolic demand of a given running speed is also reduced, meaning athletes who return to competition after using such a device in rehabilitation may not be as fit as they had been prior to their injury. Objective: To explore the metabolic effects of adding incline during bodyweight-supported treadmill running. Design: Cross-sectional. Setting: Research laboratory. Participants: Fourteen apparently healthy, recreational runners (6 females and 8 males; 21 [3] y, 1.71 [0.08] m, 63.11 [6.86] kg). Interventions: The participants performed steady-state running trials on a bodyweight-supporting treadmill at 8.5 mph. The control condition was no incline and no bodyweight support. All experimental conditions were at 30% bodyweight support. The participants began the sequence of experimental conditions at 0% incline; this increased to 1%, and from there on, 2% incline increases were introduced until a 15% grade was reached. Repeated-measures analysis of variance was used to compare all bodyweight-support conditions against the control condition. Main Outcome Measures: Oxygen consumption, heart rate, and rating of perceived exertion. Results: Level running with 30% bodyweight support reduced oxygen consumption by 21.6% (P < .001) and heart rate by 12.0% (P < .001) compared with the control. Each 2% increase in incline with bodyweight support increased oxygen consumption by 6.4% and heart rate by 3.2% on average. A 7% incline elicited similar physiological measures as the unsupported, level condition. However, the perceived intensity of this incline with bodyweight support was greater than the unsupported condition (P < .001). Conclusions: Athletes can maintain training intensity while running on a bodyweight-supporting treadmill by introducing incline. Rehabilitation programs should rely on quantitative rather than qualitative data to drive exercise prescription in this modality.


2020 ◽  
Vol 128 (2) ◽  
pp. 390-396 ◽  
Author(s):  
Karleigh E. Bradbury ◽  
Beau R. Yurkevicius ◽  
Katherine M. Mitchell ◽  
Kirsten E. Coffman ◽  
Roy M. Salgado ◽  
...  

Acetazolamide (AZ) is a medication commonly used to prevent acute mountain sickness (AMS) during rapid ascent to high altitude. However, it is unclear whether AZ use impairs exercise performance; previous literature regarding this topic is equivocal. The purpose of this study was to evaluate the impact of AZ on time-trial (TT) performance during a 30-h exposure to hypobaric hypoxia equivalent to 3,500-m altitude. Ten men [sea-level peak oxygen consumption (VO2peak): 50.8 ± 6.5 mL·kg−1·min−1; body fat %: 20.6 ± 5.2%] completed 2 30-h exposures at 3,500 m. In a crossover study design, subjects were given 500 mg/day of either AZ or a placebo. Exercise testing was completed 2 h and 24 h after ascent and consisted of 15-min steady-state treadmill walking at 40%–45% sea-level VO2peak, followed by a 2-mile self-paced treadmill TT. AMS was assessed after ~12 h and 22 h at 3,500 m. The incidence of AMS decreased from 40% with placebo to 0% with AZ. Oxygen saturation was higher ( P < 0.05) in AZ versus placebo trials at the end of the TT after 2 h (85 ± 3% vs. 79 ± 3%) and 24 h (86 ± 3% vs. 81 ± 4%). There was no difference in time to complete 2 miles between AZ and PL after 2 h (20.7 ± 3.2 vs. 22.7 ± 5.0 min, P > 0.05) or 24 h (21.5 ± 3.4 vs. 21.1 ± 2.9 min, P > 0.05) of exposure to altitude. Our results suggest that AZ (500 mg/day) does not negatively impact endurance exercise performance at 3,500 m. NEW & NOTEWORTHY To our knowledge, this is the first study to examine the impact of acetazolamide (500 mg/day) versus placebo on self-paced, peak-effort exercise performance using a short-duration exercise test in a hypobaric hypoxic environment with a repeated-measures design. In the present study, acetazolamide did not impact exercise performance after 2-h or 24-h exposure to 3,500-m simulated altitude.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 90 ◽  
Author(s):  
Russ Best ◽  
Dani Temm ◽  
Holly Hucker ◽  
Kerin McDonald

This study aimed to assess the effects of repeated menthol mouth swilling upon strength and power performance. Nineteen (10 male) participants completed familiarisation and experimental trials of repeated menthol mouth swilling (0.1% concentration) or control (no swill) in a randomised crossover design. Participants performed an isometric mid-thigh pull (IMTP; peak and mean force; N), vertical jump (peak; cm) and six second sprint (peak and mean power; W) under each condition. Participants completed three efforts per exercise task interspersed with three-minute recoveries. Mean best values were analysed via a two-way mixed repeated measures ANOVA, and differences reported as effect sizes ± 95% confidence intervals, with accompanying descriptors and p values. Differences in peak IMTP values were unclear between familiarisation and experimental trials, and between menthol and control conditions. Mean IMTP force differed between familiarisation and control (0.51; −0.15 to 1.14; p = 0.001) and familiarisation and menthol conditions (0.50; −0.15 to 1.14; p = 0.002) by a small degree, but were unclear between control and menthol conditions. Unclear differences were also noted on vertical jump performance compared to familiarisation and between experimental conditions, with repeated six second peak and average power performance also showing unclear effects across all comparisons. We conclude that repeated menthol mouth swilling does not improve strength or power performance.


2019 ◽  
Vol 14 (6) ◽  
pp. 822-828 ◽  
Author(s):  
John Molphy ◽  
John W. Dickinson ◽  
Neil J. Chester ◽  
Mike Loosemore ◽  
Gregory Whyte

Terbutaline is a prohibited drug except for athletes with a therapeutic use exemption certificate; terbutaline’s effects on endurance performance are relatively unknown. Purpose: To investigate the effects of 2 therapeutic (2 and 4 mg) inhaled doses of terbutaline on 3-km running time-trial performance. Methods: A total of 8 men (age 24.3 [2.4] y; weight 77.6 [8] kg; and height 179.5 [4.3] cm) and 8 women (age 22.4 [3] y; weight 58.6 [6] kg; and height 163 [9.2] cm) free from respiratory disease and illness provided written informed consent. Participants completed 3-km running time trials on a nonmotorized treadmill on 3 separate occasions following placebo and 2- and 4-mg inhaled terbutaline in a single-blind, repeated-measures design. Urine samples (15 min postexercise) were analyzed for terbutaline concentration. Data were analyzed using 1-way repeated-measures analysis of variance, and significance was set at P < .05 for all analyses. Results: No differences were observed for completion times (1103 [201] s, 1106 [195] s, 1098 [165] s; P = .913) for the placebo or 2- and 4-mg inhaled trials, respectively. Lactate values were higher (P = .02) after 4 mg terbutaline (10.7 [2.3] mmol·L−1) vs placebo (8.9 [1.8] mmol·L−1). Values of forced expiratory volume in the first second of expiration (FEV1) were greater after inhalation of 2 mg (5.08 [0.2]; P = .01) and 4 mg terbutaline (5.07 [0.2]; P = .02) compared with placebo (4.83 [0.5] L) postinhalation. Urinary terbutaline concentrations were mean 306 (288) ng·mL−1 and 435 (410) ng·mL−1 (P = .2) and peak 956 ng·mL−1 and 1244 ng·mL−1 after 2 and 4 mg inhaled terbutaline, respectively. No differences were observed between the male and female participants. Conclusions: Therapeutic dosing of terbutaline does not lead to an improvement in 3-km running performance despite significantly increased FEV1. The findings suggest that athletes using inhaled terbutaline at high therapeutic doses to treat asthma will not gain an ergogenic advantage during 3-km running performance.


2019 ◽  
Vol 14 (9) ◽  
pp. 1244-1249 ◽  
Author(s):  
Chelsie E. Winchcombe ◽  
Martyn J. Binnie ◽  
Matthew M. Doyle ◽  
Cruz Hogan ◽  
Peter Peeling

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.


Sign in / Sign up

Export Citation Format

Share Document