Hand-Held Dynamometry: Reliability of Lower Extremity Muscle Testing in Healthy, Physically Active, Young Adults

2008 ◽  
Vol 17 (2) ◽  
pp. 160-170 ◽  
Author(s):  
Brent M. Kelln ◽  
Patrick O. McKeon ◽  
Lauren M. Gontkof ◽  
Jay Hertel

Context:Hand-held dynamometry (HHD) has been shown to be a reliable, objective way to obtain strength measurements in elderly and physically impaired subjects.Objective:To estimate the intratester, intertester, and intersession reliability of HHD testing of lower extremity movements in young, healthy subjects.Design:Repeated measures.Setting:Sports medicine laboratory.Participants:Nine males and eleven females (Mean age = 26 years).Measurements:Strength measures of 11 right lower extremity movements were taken by 3 different testers on 2 separate days using a HHD.Results:Intratester ICC range was .77 to .97 with SEM range of .01 to .44 kg. Mean intertester ICC range was .65 to .87 with SEM range of .11 to 1.05 kg. Mean intersession ICC range was .62 to .92 with SEM range of .01 to .83 kg.Conclusions:HHD has the potential to be a reliable tool for strength measurements in healthy, strong subjects; however, there are noteworthy limitations with movements where subjects can overpower the testers.

2006 ◽  
Vol 15 (3) ◽  
pp. 254-265 ◽  
Author(s):  
Sean P. Flanagan ◽  
Kara M. Kessans ◽  
George J. Salem

Context:Information regarding how the mechanical demand differs with variants of the step exercise may be used by clinicians to more appropriately prescribe lower-extremity exercise.Objective:To quantify the joint torque contributions of the lower extremity during three different step exercises: forward step-up (FS), lateral step-up (LS), and step-down (SD).Design:An experiment with a repeated measures design.Setting:Biomechanics laboratory.Participants:18 healthy subjects (9 men, 9 women, age 25.67 ± 4.23 years, height 1.73 ± 0.10 meters, mass 72.73 ± 10.67 kilograms).Intervention:Participants performed three sets of three repetitions of each exercise while instrumented for biomechanical analysis.Main Outcome Measure:Mechanical effort of the hip, knee, and ankle of both limbs during each exercise.Results:The greatest contribution from the hip was required during the FS, while the contribution from the knee was required during the SD. The greatest contribution from the ankle was required during the LS and SD.Conclusion:Choice of step exercise results in different distributions of mechanical demand across the lower extremities.


2001 ◽  
Vol 10 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Jay Hertel ◽  
Craig R. Denegar ◽  
W.E. Buckley ◽  
Neil A. Sharkey ◽  
Wayne L. Stokes

Objective:To identify changes in sagittal- and frontal-plane center of pressure (COP) excursion length and velocity during single-leg stance under 6 orthotic conditions.Design:1 × 6 repeated-measures.Setting:University biomechanics laboratory.Participants:Fifteen healthy young adults without excessive forefoot, arch, or rear-foot malalignments.Measurements:Selected variables of COP length and velocity were calculated in both the frontal and sagittal planes during three 5-second trials of quiet unilateral stance.Methods:Postural control was assessed under 6 conditions: shoe only and 5 orthotics.Results:The medially posted orthotic caused the least frontal COP length and velocity, and the Cramer Sprained Ankle Orthotic® caused the greatest frontal-plane sway. No significant differences were found between the different orthotic conditions in sagittal-plane measures.Conclusions:Differently posted rear-foot orthotics had various effects on frontal-plane postural control in healthy participants. Further research is needed on pathological populations.


Biomechanics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 202-213
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Alana J. Turner ◽  
Reuben F. Burch V ◽  
Adam C. Knight ◽  
...  

Background: Occupational footwear and a prolonged duration of walking have been previously reported to play a role in maintaining postural stability. The purpose of this paper was to analyze the impact of three types of occupational footwear: the steel-toed work boot (ST), the tactical work boot (TB), and the low-top work shoe (LT) on previously unreported lower extremity muscle activity during postural stability tasks. Methods: Electromyography (EMG) muscle activity was measured from four lower extremity muscles (vastus medialis (VM), medial hamstrings (MH), tibialis anterior (TA), and medial gastrocnemius (MG) during maximal voluntary isometric contractions (MVIC) and during a sensory organization test (SOT) every 30 min over a 4 h simulated workload while wearing ST, TB, and LT footwear. The mean MVIC and the mean and percentage MVIC during each SOT condition from each muscle was analyzed individually using a repeated measures ANOVA at an alpha level of 0.05. Results: Significant differences (p < 0.05) were found for maximal exertions, but this was limited to only the time main effect. No significant differences existed for EMG measures during the SOT. Conclusion: The findings suggest that occupational footwear type does not influence lower extremity muscle activity during both MVIC and SOT. Significantly lower muscle activity during maximal exertions over the course of the 4 h workload was evident, which can be attributed to localized muscular fatigue, but this was not sufficient to impact muscle activity during postural stability tasks.


2004 ◽  
Vol 13 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Matthew T. Crill ◽  
Christopher P. Kolba ◽  
Gary S. Chleboun

Context:The lunge is commonly used to assess lower extremity strength, flexibility, and balance, yet few objective data exist on it.Objectives:To determine the reliability of the lunge test, determine whether there are gender differences associated with it, and study the relationships between lunge distance and height and leg length.Design:Single-factor repeated measures.Setting:Laboratory.Participants:57: 29 men, 28 women.Main Outcome Measures:Anterior lunge (AL) and lateral lunge (LL) distance, height, and leg length (cm).Results:LL distance (131.3 ± 12.3) is significantly greater than AL distance (113.7 ± 17.2) in men and in women (LL 113.6 ± 10.5, AL 96.6 ± 11.1). There was no significant correlation for height or leg length to any lunge measurement in men or women.Conclusion:The lunge can be used as a reliable test to measure lower extremity function. Right- and left-leg lunge distances should not differ, and LL will always be greater than AL.


2008 ◽  
Vol 17 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Becky L. Heinert ◽  
Thomas W. Kernozek ◽  
John F. Greany ◽  
Dennis C. Fater

Objective:To determine if females with hip abductor weakness are more likely to demonstrate greater knee abduction during the stance phase of running than a strong hip abductor group.Study Design:Observational prospective study design.Setting:University biomechanics laboratory.Participants:15 females with weak hip abductors and 15 females with strong hip abductors.Main Outcome Measures:Group differences in lower extremity kinematics were analyzed using repeated measures ANOVA with one between factor of group and one within factor of position with a significance value of P < .05.Results:The subjects with weak hip abductors demonstrated greater knee abduction during the stance phase of treadmill running than the strong group (P < .05). No other significant differences were found in the sagittal or frontal plane measurements of the hip, knee, or pelvis.Conclusions:Hip abductor weakness may influence knee abduction during the stance phase of running.


Author(s):  
Mattie E. Pontiff ◽  
Li Li ◽  
Noelle G. Moreau

Background: Lower extremity muscle power is critical for daily activities and athletic performance in clinical populations. Objective: The purpose of this study was to determine the reliability and validity of 3 clinically feasible methods to measure lower extremity muscle power during a leg press. Methods: Ten of 26 subjects performed 2 sessions of 5 submaximal leg presses separated by 3-7 days in this repeated-measures cross-sectional design; the remaining performed 1 test session. Power was calculated independently for each method [simple video, linear position transducer, and accelerometer] and compared to the reference force plate. Test-retest reliability was evaluated using intraclass correlation coefficients (ICC). Pearson’s correlation coefficient (r), Bland-Altman plots with 95% limits of agreement (LOA), and mean bias percentages (%) were used to determine relative and absolute validity. Results: Power measures were reliable for all methods (ICC=.97-.99). All were highly correlated with the force plate (r=.96-.98). Mean bias was -0.8% (LOA: -16.57% to 14.98%) (video), -13.21% (LOA: -23.81% to -2.61%) (position transducer) compared to the force plate. Proportional bias was observed for accelerometry. Conclusion: All methods were reliable and highly correlated with the force plate. Only the video and position transducer demonstrated absolute validity. The position transducer was the most feasible method because of its simplicity and accuracy in measuring power.


2021 ◽  
Vol 19 (1) ◽  
pp. 51-58
Author(s):  
Nastaran Ghotbi ◽  

Objectives: Lower extremity muscles are critical for maintaining dynamic balance and athletic performance. Fatigue of these muscles may affect dynamic balance. It is unclear whether fatigue in a particular muscle group can affect dynamic balance more than that in other groups. This study was conducted to evaluate and compare the effects of fatigue in 5 muscle groups on dynamic balance in volleyball players. Methods: Fifteen healthy male volleyball players separately performed the Star Excursion Balance Test before and immediately after the occurrence of fatigue of ankle Plantar Flexor (PF), knee extensor, knee flexor, hip abductor, and hip adductor muscles. Composite reach distance and distance in anterior, posteromedial, and posterolateral directions were recorded, accordingly. Results: Repeated-measures Analysis of Variance (ANOVA) data indicated that fatigue of all muscle groups significantly decreased the mean score of composite (P<0.001). Anterior, posteromedial, and posterolateral distance scores decreased following muscle fatigue of knee extensors and ankle PFs (P<0.05). Discussion: This study suggested that regarding composite reach score, fatigue of ankle, knee, and hip muscles similarly decreased dynamic balance. However, evaluating three main directions revealed that knee extensors and ankle PFs muscles fatigue presented more prominent effects on the explored volleyball players’ balance, compared to the other muscles.


2006 ◽  
Vol 15 (4) ◽  
pp. 326-337 ◽  
Author(s):  
Mary E. Naylor ◽  
William A. Romani

Context:There is a growing need for objective measures of proprioception and balance in athletic females.Objective:To determine the intertester and intratester reliability of the Neurocom Balance Master (NBM) forward lunge (FL), step up and over (SUO), and step quick turn (SQT) tests on a young, healthy, female population.Design:Repeated measures design.Setting:University medical laboratory.Participants:15 young healthy female volunteers (height 155.1 cm ± 18.5 cm, mass 61.1 kg ± 7.3 kg, age 24.2 years ± 2.9 years).Measurements:The average of three trials on the FL, SUO, and SQT taken during each of three testing sessions on the NBM long force plate.Results:Inter and intratester reliability for the FL (ICC r = 0.71 to r = 0.93) and SQT (ICC r = 0.70 to r = 0.88) ranged from good to excellent while reliability for the SUO ranged from fair to excellent (ICC r = 0.59 to r = 0.92).Conclusions:The three NBM tests are reliable in healthy, young, physically active females.


2007 ◽  
Vol 13 (3) ◽  
pp. 357-368 ◽  
Author(s):  
A.D. Goodman ◽  
J.A. Cohen ◽  
A. Cross ◽  
T. Vollmer ◽  
M. Rizzo ◽  
...  

Objective To determine the safety of sustained-release 4-aminopyridine in subjects with mutiple sclerosis (MS) and to examine dose-related efficacy up to 40 mg twice daily. Method Multicenter, randomized, double-blind, placebo-controlled, study. Following a 4-week baseline peroid, subjects were randomly assigned to receive Fampridine-SR (n=25, doses from 10 to 40 mg twice daily, increasing in 5 mg increments weekly) or placebo (n=11). A battery of assessments was performed weekly, including the MS Functional Composite (MSFC), fatigue questionnaires, and lower extremity manual muscle testing. Results The most common adverse events were dizziness, insomnia, paresthesia, asthenia, nausea, headache, and tremor. Five subjects were discontinued from Fampridine-SR because of adverse events at doses greater than 25 mg, and these included convulsions in two subjects at doses of 30 and 35 mg twice daily. Improvement were seen in lower extremity muscle strength (prospective analysis) and walking speed (post-hoc analysis) in the Fampridine-SR group compared to placebo (unadjusted p-values of 0.01 and 0.03, respectively). There were no significant differences in other MSFC measure or fatigue scores. Conclusions Future studies should employ doses up to 20 mg twice daily with lower extremity strength and walking speed as potential outcome measures. Multiple Sclerosis 2007; 13: 357-368. http://msj.sagepub.com


Sign in / Sign up

Export Citation Format

Share Document