Relationship Between Knee Walking Kinematics and Muscle Flexibility in Runners

2013 ◽  
Vol 22 (4) ◽  
pp. 279-287 ◽  
Author(s):  
Nathaly Gaudreault ◽  
Alex Fuentes ◽  
Neila Mezghani ◽  
Virginie O. Gauthier ◽  
Katia Turcot

Context:Decreased flexibility in muscles and joints of lower extremities is commonly observed in runners. Understanding the effect of decreased flexibility on knee walking kinematics in runners is important because, over time, altered gait patterns can make runners vulnerable to overuse injuries or degenerative pathologies.Objectives:To compare hamstring and iliotibial-band (ITB) flexibility and knee kinematics in runners and nonrunners.Design:A descriptive, comparative laboratory study.Setting:Hamstring and ITB flexibility were measured with the active knee-extension test and the modified Ober test, respectively, in both groups of participants. Three-dimensional (3D) walking kinematic data were then recorded at the knee using a motiontracking system.Participants:18 runners and 16 nonrunners.Main Outcome Measures:Knee-extension angle (hamstring flexibility) and hip-adduction angle (ITB flexibility). Knee kinematic parameters of interest included knee angle at initial contact, peak knee angles, and knee-angle range in all planes of movement.Results:The runners had a significantly less flexible ITB than the nonrunners (hip adduction [−] and adduction [+] angles, 3.1° ± 5.6° vs −6.4° ± 4.5°; P < .001). The runners demonstrated a greater mean tibial external-rotation angle at initial contact (7.3° ± 5.8° vs 2.0° ± 4.0°; P = .01) and a smaller mean peak tibial internal-rotation angle (−1.6° ± 3.0° vs −4.2° ± 3.2°; P = .04) than the nonrunners.Conclusion:This study provides new insight into the relationship between muscle flexibility and 3D knee kinematics in runners. This supports the premise that there is an association between muscle flexibility and transverse-plane knee kinematics in this population.

2021 ◽  
Vol 11 (24) ◽  
pp. 12144
Author(s):  
Masen Zhang ◽  
Huijuan Shi ◽  
Hui Liu ◽  
Xinglong Zhou

The heel-to-toe drop of running shoes is a key parameter influencing lower extremity kinematics during running. Previous studies testing running shoes with lower or larger drops generally used minimalist or maximalist shoes, where the factors outside of the drop may lead to the observed changes in running biomechanics. Therefore, our aim was to compare the strike patterns, impact force, and lower extremity biomechanics when running in shoes that varied only in their drops. Eighteen habitual rearfoot strikers performed trials wearing running shoes with four drop conditions: 15 mm, 10 mm, 5 mm, and without a drop. Three-dimensional (3D) tracks of the reflective markers and impact force were synchronously collected using a video graphic acquisition system and two force plates. The biomechanical parameters were compared among the four drop conditions using one-way ANOVA of repeated measures. A greater foot inclination angle (p = 0.001, ηp2 = 0.36) at initial contact and a lower vertical loading rate (p = 0.002, ηp2 = 0.32) during the standing phase were found when running in shoes with large drops compared with running in shoes without a drop. Running in shoes with large drops, as opposed to without, significantly increased the peak knee extension moment (p = 0.002, ηp2 = 0.27), but decreased the peak ankle eversion moment (p = 0.001, ηp2 = 0.35). These findings suggest that the heel-to-toe drop of running shoes significantly influences the running pattern and the loading on lower extremity joints. Running shoes with large drops may be disadvantageous for runners with knee weakness and advantageous for runners with ankle weakness.


2009 ◽  
Vol 18 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Lindsay K. Drewes ◽  
Patrick O. McKeon ◽  
Gabriele Paolini ◽  
Patrick Riley ◽  
D. Casey Kerrigan ◽  
...  

Context:Kinematic patterns during gait have not been extensively studied in relation to chronic ankle instability (CAI).Objective:To determine whether individuals with CAI demonstrate altered ankle kinematics and shank-rear-foot coupling compared with controls during walking and jogging.Design:Case control.Setting:Motion-analysis laboratory.Participants:7 participants (3 men, 4 women) suffering from CAI (age 24.6 ± 4.2 y, height 172.6 ± 9.4 cm, mass 70.9 ± 8.1 kg) and 7 (3 men, 4 women) healthy, matched controls (age 24.7 ± 4.5 y, height 168.2 ± 5.9 cm, mass 66.5 ± 9.8 kg).Interventions:Subjects walked and jogged on a treadmill while 3-dimensional kinematics of the lower extremities were captured.Main Outcome Measures:The positions of rear-foot inversion–eversion and shank rotation were calculated throughout the gait cycle. Continuous relative-phase angles between these segments were calculated to assess coupling.Results:The CAI group demonstrated more rear-foot inversion and shank external rotation during walking and jogging. There were differences between groups in shank-rear-foot coupling during terminal swing at both speeds.Conclusions:Altered ankle kinematics and joint coupling during the terminal-swing phase of gait may predispose a population with CAI to ankle-inversion injuries. Less coordinated movement during gait may be an indication of altered neuromuscular recruitment of the musculature surrounding the ankle as the foot is being positioned for initial contact.


2010 ◽  
Vol 26 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Abbey C. Thomas ◽  
Scott G. McLean ◽  
Riann M. Palmieri-Smith

Neuromuscular fatigue exacerbates abnormal landing strategies, which may increase noncontact anterior cruciate ligament (ACL) injury risk. The synergistic actions of quadriceps and hamstrings (QH) muscles are central to an upright landing posture, though the precise effect of simultaneous fatigue of these muscles on landing and ACL injury risk is unclear. Elucidating neuromechanical responses to QH fatigue thus appears important in developing more targeted fatigue-resistance intervention strategies. The current study thus aimed to examine the effects of QH fatigue on lower extremity neuromechanics during dynamic activity. Twenty-five healthy male and female volunteers performed three single-leg forward hops onto a force platform before and after QH fatigue. Fatigue was induced through sets of alternating QH concentric contractions, on an isokinetic dynamometer, until the first five repetitions of a set were performed at least 50% below QH peak torque. Three-dimensional hip and knee kinematics and normalized (body mass × height) kinetic variables were quantified for pre- and postfatigue landings and subsequently analyzed by way of repeated- measures mixed-model ANOVAs. QH fatigue produced significant increases in initial contact (IC) hip internal rotation and knee extension and external rotation angles (p< .05), with the increases in knee extension and external rotation being maintained at the time of peak vertical ground reaction force (vGRF) (p< .05). Larger knee extension and smaller knee fexion and external rotation moments were also evident at peak vGRF following fatigue (p< .05). Females landed with greater hip fexion and less abduction than males at both IC and peak vGRF as well as greater knee fexion at peak vGRF (p< .05). The peak vGRF was larger for females than males (p< .05). No sex × fatigue effects were found (p> .05). Fatigue of the QH muscles altered hip and knee neuromechanics, which may increase the risk of ACL injury. Prevention programs should incorporate methods aimed at countering QH fatigue.


2018 ◽  
Vol 46 (12) ◽  
pp. 3023-3031 ◽  
Author(s):  
Christopher Bramah ◽  
Stephen J. Preece ◽  
Niamh Gill ◽  
Lee Herrington

Background: Previous research has demonstrated clear associations between specific running injuries and patterns of lower limb kinematics. However, there has been minimal research investigating whether the same kinematic patterns could underlie multiple different soft tissue running injuries. If they do, such kinematic patterns could be considered global contributors to running injuries. Hypothesis: Injured runners will demonstrate differences in running kinematics when compared with injury-free controls. These kinematic patterns will be consistent among injured subgroups. Study Design: Controlled laboratory study. Methods: The authors studied 72 injured runners and 36 healthy controls. The injured group contained 4 subgroups of runners with either patellofemoral pain, iliotibial band syndrome, medial tibial stress syndrome, or Achilles tendinopathy (n = 18 each). Three-dimensional running kinematics were compared between injured and healthy runners and then between the 4 injured subgroups. A logistic regression model was used to determine which parameters could be used to identify injured runners. Results: The injured runners demonstrated greater contralateral pelvic drop (CPD) and forward trunk lean at midstance and a more extended knee and dorsiflexed ankle at initial contact. The subgroup analysis of variance found that these kinematic patterns were consistent across each of the 4 injured subgroups. CPD was found to be the most important variable predicting the classification of participants as healthy or injured. Importantly, for every 1° increase in pelvic drop, there was an 80% increase in the odds of being classified as injured. Conclusion: This study identified a number of global kinematic contributors to common running injuries. In particular, we found injured runners to run with greater peak CPD and trunk forward lean as well as an extended knee and dorsiflexed ankle at initial contact. CPD appears to be the variable most strongly associated with common running-related injuries. Clinical Relevance: The identified kinematic patterns may prove beneficial for clinicians when assessing for biomechanical contributors to running injuries.


2016 ◽  
Vol 44 (7) ◽  
pp. 1753-1761 ◽  
Author(s):  
Katie A. Ewing ◽  
Rezaul K. Begg ◽  
Mary P. Galea ◽  
Peter V.S. Lee

Background: Anterior cruciate ligament (ACL) injuries commonly occur during landing maneuvers. Prophylactic knee braces were introduced to reduce the risk of ACL injuries, but their effectiveness is debated. Hypotheses: We hypothesized that bracing would improve biomechanical factors previously related to the risk of ACL injuries, such as increased hip and knee flexion angles at initial contact and at peak vertical ground-reaction force (GRF), increased ankle plantar flexion angles at initial contact, decreased peak GRFs, and decreased peak knee extension moment. We also hypothesized that bracing would increase the negative power and work of the hip joint and would decrease the negative power and work of the knee and ankle joints. Study Design: Controlled laboratory study. Methods: Three-dimensional motion and force plate data were collected from 8 female and 7 male recreational athletes performing double-leg drop landings from 0.30 m and 0.60 m with and without a prophylactic knee brace. GRFs, joint angles, moments, power, and work were calculated for each athlete with and without a knee brace. Results: Prophylactic knee bracing increased the hip flexion angle at peak GRF by 5.56° ( P < .001), knee flexion angle at peak GRF by 4.75° ( P = .001), and peak hip extension moment by 0.44 N·m/kg ( P < .001). Bracing also increased the peak hip negative power by 4.89 W/kg ( P = .002) and hip negative work by 0.14 J/kg ( P = .001) but did not result in significant differences in the energetics of the knee and ankle. No differences in peak GRFs and peak knee extension moment were observed with bracing. Conclusion: The application of a prophylactic knee brace resulted in improvements in important biomechanical factors associated with the risk of ACL injuries. Clinical Relevance: Prophylactic knee braces may help reduce the risk of noncontact knee injuries in recreational and professional athletes while playing sports. Further studies should investigate different types of prophylactic knee braces in conjunction with existing training interventions so that the sports medicine community can better assess the effectiveness of prophylactic knee bracing.


2013 ◽  
Vol 22 (3) ◽  
pp. 184-190 ◽  
Author(s):  
John H. Hollman ◽  
Jeffrey M. Hohl ◽  
Jordan L. Kraft ◽  
Jeffrey D. Strauss ◽  
Katie J. Traver

Context:Abnormal lower extremity kinematics during dynamic activities may be influenced by impaired gluteus maximus function.Objective:To examine whether hip-extensor strength and gluteus maximus recruitment are associated with dynamic frontal-plane knee motion during a jump-landing task.Design:Exploratory study.Setting:Biomechanics laboratory.Participants:40 healthy female volunteers.Main Outcome Measures:Isometric hip-extension strength was measured bilaterally with a handheld dynamometer. Three-dimensional hip and knee kinematics and gluteus maximus electromyography data were collected bilaterally during a jumplanding test. Data were analyzed with hierarchical linear regression and partial correlation coefficients (α = .05).Results:Hip motion in the transverse plane was highly correlated with knee motion in the frontal plane (partial r = .724). After controlling for hip motion, reduced magnitudes of isometric hip-extensor strength (partial r = .470) and peak gluteus maximus recruitment (partial r = .277) were correlated with increased magnitudes of knee valgus during the jump-landing task.Conclusion:Hip-extensor strength and gluteus maximus recruitment, which represents a measure of the muscle’s neuromuscular control, are both associated with frontal-plane knee motions during a dynamic weight-bearing task.


2013 ◽  
Vol 39 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Shuyang Han ◽  
Shirong Ge ◽  
Hongtao Liu ◽  
Rong Liu

Abstract The squat exercise was usually performed with varying feet and hip angles by different populations. The objective of this study was to compare and contrast the three-dimensional knee angles, moments, and forces during dynamic squat exercises with varying feet and hip angles. Lower extremity motions and ground reaction forces for fifteen healthy subjects (9 females and 6 males) were recorded while performing the squat with feet pointing straight ahead (neutral squat), 30º feet adduction (squeeze squat) and 30º feet abduction (outward squat). Nonparametric procedures were used to detect differences in the interested measures between the conditions. No significant difference in three-dimensional peak knee angles was observed for three squat exercises (p>0.05), however, the overall tendency of knee rotations was affected by varying feet and hip positions. During the whole cycle, the outward squat mainly displayed adduction moments, while the neutral and squeeze squat demonstrated abduction moments. Peak abduction moments were significantly affected by feet positions (p<0.05). Moreover, the tibiofemoral and patellofemoral joint forces progressively increased as knee flexed and decreased as knee extended, yet peak forces were not affected by varying feet positions (p>0.05). In conclusion, a neutral position is recommended to perform the squat exercise, while the squeeze squat and outward squat might contribute to the occurrence of joint pathologies.


2021 ◽  
pp. 194173812199906
Author(s):  
Ivana Hanzlíková ◽  
Jim Richards ◽  
Josie Athens ◽  
Kim Hébert-Losier

Background: Generalized joint hypermobility is an important risk factor for knee injuries, including to the anterior cruciate ligament (ACL). Examining movement patterns specific to hypermobile individuals during sport-specific movements could facilitate development of targeted recommendations and injury prevention programs for this population. Hypothesis: Asymptomatic hypermobile participants will present kinematics measures suggestive of a greater risk of noncontact knee or ACL injuries. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: Forty-two (15 asymptomatic hypermobile and 27 nonhypermobile) individuals performed unanticipated side-step cutting on their dominant and nondominant legs. Ankle, knee, hip, pelvis, and trunk angles in all planes of motion were collected during the first 100 ms after initial contact using a 3-dimensional infrared system. Precontact foot-ground angles were also extracted. Data from hypermobile and nonhypermobile groups were compared using multiple regression models with sex as a confounder. When nonsignificant, the confounder was removed from the model. Effect sizes (Hedge g) were calculated in the presence of significant between-group differences. Results: Hypermobile individuals presented with lower minimum knee valgus angles with a mean difference of 3.5° ( P = 0.03, Hedge g = 0.69) and greater peak knee external rotation angles with a mean difference of −4.5° ( P = 0.04, Hedge g = 0.70) during dominant leg cutting, and lower peak ankle plantarflexion angles with a mean difference of 4.5° ( P = 0.03, Hedge g = 0.73) during nondominant leg cutting compared with nonhypermobile individuals. Conclusions: Based on current scientific evidence, however, the identified differences are not crucial biomechanical injury risk factors that could predispose asymptomatic hypermobile individuals to noncontact knee or ACL injuries. Clinical Relevance: Further research is needed to highlight differences between hypermobility groups. Knowledge of the differences between these groups may change the physical activity recommendations, prevention of injury, and rehabilitation approaches.


2020 ◽  
Vol 9 (1) ◽  
pp. 25-32
Author(s):  
Geoffrey Millour ◽  
Sebastien Duc ◽  
Theo Ouvrard ◽  
Damien Segui ◽  
Frederic Puel ◽  
...  

Bike-fitting methods based on the knee kinematics have been developed to determine the optimal saddle height. Among them, the Ferrer-Roca method advises a knee angle between 30 and 40° in the sagittal plane when the crank arm is aligned with the seat tube while pedalling. However, the foot orientation varies between individuals and can influence the knee angle throughout the pedalling cycle. The objective of this study was to measure the inter-individual variability in joint kinematics of professional cyclists and to evaluate the influence of the ankle angle modification on the knee angle during pedalling. Seventeen professional cyclists performed a 3-min pedalling test at 150 W and 80 rpm on their personal road bike mounted on an Elite Turno® ergometer (Elite, Fontaniva, Italia). The knee and ankle angles were measured using 2D kinematic analysis. The average knee angle (38°) was in the optimal range of 30–40°, but great variability was observed between individuals (coefficient of variation of 11.8% and 9.4% for knee and ankle angles, respectively). Moreover, five of them had a knee angle greater than 40°. In addition, their ankle angle was 15% lower than that of cyclists who had a knee angle between 30 and 40° (50 ± 4° vs. 58 ± 4°, p < 0.05). The results suggest that the knee angle observed when professional cyclists use their preferred saddle height varies among individuals and is related to the foot orientation while pedalling. The maximum knee extension angle is lower for the cyclists who accentuate the dorsiflexion but greater for those who pedalled with a plantarflexion. This implies that the saddle height adjustment method based on the knee kinematics while pedalling should consider both the knee and ankle angles.


2021 ◽  
Author(s):  
Kenichi Kono ◽  
Takaharu Yamazaki ◽  
Shoji Konda ◽  
Hiroshi Inui ◽  
Sakae Tanaka ◽  
...  

Abstract Background The normal knee kinematics during asymmetrical kneeling such as the sitting sideways remains unknown. This study aimed to clarify in vivo kinematics during sitting sideways of normal knees. Methods Twelve knees from six volunteers were examined. Under fluoroscopy, each volunteer performed a sitting sideways. A two-dimensional/three-dimensional registration technique was used. The rotation angle, varus-valgus angle, anteroposterior translation of the medial and lateral sides of the femur relative to the tibia, and kinematic pathway in each flexion angle was evaluated. Results Bilateral knees during sitting sideways showed a femoral external rotation relative to the tibia with flexion. Whereas the ipsilateral knees showed valgus movement, and the contralateral knees showed varus movement. The medial side of the contralateral knees was more posteriorly located than that of the ipsilateral knees beyond 110° of flexion. The lateral side of the contralateral knees was more anteriorly located than that of the ipsilateral knees from 120° to 150° of flexion. In the ipsilateral knees, a medial pivot pattern followed by a bicondylar rollback was observed. In the contralateral knees, no significant movement followed by a bicondylar rollback was observed. Conclusion Even though the asymmetrical kneeling such as sitting sideways, the knees did not display asymmetrical movement.


Sign in / Sign up

Export Citation Format

Share Document