scholarly journals Sustained Activation of N-Methyl-d-Aspartate Receptors in Podoctyes Leads to Oxidative Stress, Mobilization of Transient Receptor Potential Canonical 6 Channels, Nuclear Factor of Activated T Cells Activation, and Apoptotic Cell Death

2012 ◽  
Vol 82 (4) ◽  
pp. 728-737 ◽  
Author(s):  
Eun Young Kim ◽  
Marc Anderson ◽  
Stuart E. Dryer
2021 ◽  
Author(s):  
Shouvonik Sengupta ◽  
Kelsi O. West ◽  
Shridhar Sanghvi ◽  
Georgios Laliotis ◽  
Laura M. Agosto ◽  
...  

AbstractProtein Arginine Methyltransferase (PRMT) 5 is the major type 2 methyltransferase catalyzing symmetric dimethylation (SDM) of arginine. PRMT5 inhibition or deletion in CD4 Th cells reduces TcR engagement-induced IL-2 production and Th cell expansion and confers protection against experimental autoimmune encephalomyelitis (EAE), the animal model of Multiple Sclerosis. However, the mechanisms by which PRMT5 modulates T helper (Th) cell proliferation are still not completely understood and neither are the methylation targets in T cells. In this manuscript, we uncover the role of PRMT5 on alternative splicing (AS) in activated T cells and identify several targets of PRMT5 SDM involved in splicing. In addition, we find a possible link between PRMT5 mediated AS of Trpm4 (Transient Receptor Potential Cation Channel Subfamily M Member 4) and TcR/NFAT signaling/IL-2 production. This understanding may guide development of drugs targeting these processes to benefit patients with T cell-mediated diseases.


2020 ◽  
Vol 318 (3) ◽  
pp. C627-C639 ◽  
Author(s):  
Charles E. Norton ◽  
Nicole L. Jacobsen ◽  
Shenghua Y. Sinkler ◽  
Camila Manrique-Acevedo ◽  
Steven S. Segal

A Western-style diet (WD; high in fat and carbohydrates) increases vascular oxidative stress. We hypothesized that vascular cells adapt to a WD by developing resilience to oxidative stress. Male and female C57BL/6J mice (4 wk of age) were fed a control diet (CD) or a WD for 16–20 wk. Superior epigastric arteries (SEAs; diameter, ~125 µm) were isolated and pressurized for study. Basal reactive oxygen species production was greatest in SEAs from males fed the WD. During exposure to H2O2 (200 μM, 50 min), propidium iodide staining identified nuclei of disrupted endothelial cells (ECs) and smooth muscle cells (SMCs). For mice fed the CD, death of SMCs (21%) and ECs (6%) was greater ( P < 0.05) in SEAs from males than females (9% and 2%, respectively). WD consumption attenuated cell death most effectively in SEAs from males. With no difference at rest, H2O2 increased intracellular Ca2+ concentration ([Ca2+]i) to the greatest extent in SEAs from males, as shown by fura 2 fluorescence. Selective disruption of the endothelium (luminal air bubble) increased [Ca2+]i and SMC death during H2O2 exposure irrespective of sex; the WD reduced both responses most effectively in males. Nonselective transient receptor potential (TRP) channel inhibition (ruthenium red, 5 μM) attenuated the rise of [Ca2+]i, as did selective inhibition of TRP vanilloid type 4 (TRPV4) channels (HC-067047, 1 μM), which also attenuated cell death. In contrast, inhibition of voltage-gated Ca2+ channels (diltiazem, 50 μM) was without effect. Thus, for resistance arteries during acute oxidative stress: 1) ECs are more resilient than (and can protect) SMCs, 2) vessels from females are inherently more resilient than those from males, and 3) a WD increases vascular resilience by diminishing TRPV4 channel-dependent Ca2+ entry.


2015 ◽  
Vol 309 (2) ◽  
pp. F98-F108 ◽  
Author(s):  
Mousa Abkhezr ◽  
Eun Young Kim ◽  
Hila Roshanravan ◽  
Fotis Nikolos ◽  
Christoforos Thomas ◽  
...  

TNF has been implicated in glomerular diseases, but its actions on podocytes are not well understood. Endogenous TNF expression is markedly increased in mouse podocytes exposed to sera from patients with recurrent focal segmental glomerulosclerosis, and TNF is able to increase its own expression in these cells. Exposure of podocytes to TNF increased phosphorylation of NF-κB p65-RelA followed by increased tyrosine phosphorylation of STAT3. STAT3 activation was blocked by the NF-κB inhibitor JSH-23 and by the STAT3 inhibitor stattic, whereas TNF-evoked NF-κB activation was not affected by stattic. TNF treatment increased nuclear accumulation of nuclear factor of activated T cells (NFAT)c1 in podocytes, a process that occurred downstream of STAT3 activation. TNF also increased expression of cyclin D1 but had no effect on cyclin-dependent kinase 4, p27kip, or podocin. Despite its effects on cyclin D1, TNF treatment for up to 72 h did not cause podocytes to reenter the cell cycle. TNF increased total expression of transient receptor potential (TRP)C6 channels through a pathway dependent on NFATc1 and increased the steady-state expression of TRPC6 subunits on the podocyte cell surface. TNF effects on TRPC6 trafficking required ROS. Consistent with this, La3+-sensitive cationic currents activated by a diacylglycerol analog were increased in TNF-treated cells. The effects of TNF on NFATc1 and TRPC6 expression were blocked by cyclosporine A but were not blocked by the pan-TRP inhibitor SKF-96365. TNF therefore influences multiple pathways previously implicated in podocyte pathophysiology and is likely to sensitize these cells to other insults.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Iordan Iordanov ◽  
Csaba Mihályi ◽  
Balázs Tóth ◽  
László Csanády

Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Igor Blaha ◽  
María Elvira López-Oliva ◽  
María Pilar Martínez ◽  
Paz Recio ◽  
Ángel Agis-Torres ◽  
...  

Purpose. This study investigates whether functionality and/or expression changes of transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) channels, oxidative stress, and hydrogen sulfide (H2S) are involved in the bladder dysfunction from an insulin-resistant obese Zucker rat (OZR). Materials and Methods. Detrusor smooth muscle (DSM) samples from the OZR and their respective controls, a lean Zucker rat (LZR), were processed for immunohistochemistry for studying the expression of TRPA1 and TRPV1 and the H2S synthase cystathionine beta-synthase (CBS) and cysthathionine-γ-lyase (CSE). Isometric force recordings to assess the effects of TRPA1 agonists and antagonists on DSM contractility and measurement of oxidative stress and H2S production were also performed. Results. Neuronal TRPA1 expression was increased in the OZR bladder. Electrical field stimulation- (EFS-) elicited contraction was reduced in the OZR bladder. In both LZR and OZR, TRPA1 activation failed to modify DSM basal tension but enhanced EFS contraction; this response is inhibited by the TRPA1 blockade. In the OZR bladder, reactive oxygen species, malondialdehyde, and protein carbonyl contents were increased and antioxidant enzyme activities (superoxide dismutase, catalase, GR, and GPx) were diminished. CSE expression and CSE-generated H2S production were also reduced in the OZR. Both TRPV1 and CBS expressions were not changed in the OZR. Conclusions. These results suggest that an increased expression and functionality of TRPA1, an augmented oxidative stress, and a downregulation of the CSE/H2S pathway are involved in the impairment of nerve-evoked DSM contraction from the OZR.


Sign in / Sign up

Export Citation Format

Share Document