scholarly journals Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor

2016 ◽  
Vol 2 (3) ◽  
pp. e1501652 ◽  
Author(s):  
Matthieu Bugnet ◽  
Stefan Löffler ◽  
David Hawthorn ◽  
Hanna A. Dabkowska ◽  
Graeme M. Luke ◽  
...  

Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.

Author(s):  
D. J. Wallis ◽  
N. D. Browning

In electron energy loss spectroscopy (EELS), the near-edge region of a core-loss edge contains information on high-order atomic correlations. These correlations give details of the 3-D atomic structure which can be elucidated using multiple-scattering (MS) theory. MS calculations use real space clusters making them ideal for use in low-symmetry systems such as defects and interfaces. When coupled with the atomic spatial resolution capabilities of the scanning transmission electron microscope (STEM), there therefore exists the ability to obtain 3-D structural information from individual atomic scale structures. For ceramic materials where the structure-property relationships are dominated by defects and interfaces, this methodology can provide unique information on key issues such as like-ion repulsion and the presence of vacancies, impurities and structural distortion.An example of the use of MS-theory is shown in fig 1, where an experimental oxygen K-edge from SrTiO3 is compared to full MS-calculations for successive shells (a shell consists of neighboring atoms, so that 1 shell includes only nearest neighbors, 2 shells includes first and second-nearest neighbors, and so on).


1999 ◽  
Vol 583 ◽  
Author(s):  
S. J. Pennycook ◽  
Y. Yan ◽  
A. Norman ◽  
Y. Zhang ◽  
M. Al-Jassim ◽  
...  

AbstractIn the last ten years, the scanning transmission electron microscope (STEM) has become capable of forming electron probes of atomic dimensions making possible a new approach to high-resolution electron microscopy, Z-contrast imaging. Formed by mapping the intensity of high-angle scattered electrons as the probe is scanned across the specimen, the Z-contrast image represents a direct map of the specimen scattering power at atomic resolution. It is an incoherent image, and can be directly interpreted in terms of atomic columns. High angle scattering comes predominantly from the atomic nuclei, so the scattering cross section depends on atomic number (Z) squared. Z-contrast microscopy can therefore be used to study compositional ordering and segregation at the atomic scale. Here we present three examples of ordering: first, ferroelectric materials, second, III-V semiconductor alloys, and finally, cooperative segregation at a semiconductor grain boundary, where a combination of Z-contrast imaging with first principles theory provides a complete atomic-scale view of the sites and configurations of the segregant atoms.


Author(s):  
C. Julian Chen

This chapter discusses the imaging mechanism of STM and AFM at the atomic scale. Experimental facts show that at atomic resolution, tip electronic states play a key role. Analytic theoretical treatments provide quantitative explanation of the effect of the tip electronic states. On transition-metal tips, first-principle studies unanimously show that d-type tip electronic states dominate the Fermi-level DOS. First-principle studies of the combined tip-sample systems show that for both STM and AFM, the p- and d-type tip electronic states are the keys to understanding the atomic-scale images. The case of spin-polarized STM and the chemical identification of surface atoms are also discussed in terms of tip electronic structure. The chapter concludes with discussions of experimental verifications of the reciprocity principle: at atomic resolution, the role of tip electronic states and the sample electronic states are interchangeable.


Nanoscale ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 124-130
Author(s):  
Xinyu Liu ◽  
Jianlin Wang ◽  
Chaojie Ma ◽  
Xudan Huang ◽  
Kaihui Liu ◽  
...  

The fine atomic and electronic structure of Pb-leaked CsPbBr3 quantum dots have been revealed using atomic-resolution STEM.


Author(s):  
N. D. Browning ◽  
D. J. Wallis ◽  
S. Sivananthan ◽  
P. D. Nellist ◽  
S. J. Pennycook

Materials properties associated with interfaces and defects are dominated by atomic scale fluctuations in composition, structure and bonding. Although electron energy loss spectroscopy (EELS) provides a powerful tool to probe these features, low signal, lens aberrations, image coherence and specimen drift preclude the use of spectrum imaging and energy filtered imaging for these high-resolution problems. However, by utilizing Z-contrast imaging in conjunction with EELS in the scanning transmission electron microscope (STEM), these limitations are largely overcome and EELS appears capable of providing fudamental 3-D characterization of defect and interface structures with atomic resolution and sensitivity.The main premise in utilizing these combined techniques is that the properties of defects and interfaces must be associated with structural differences relative to the bulk. If those structural differences can be located, then it is only necessary to perform spectroscopy in their vicinity to understand the structure property relationship. For crystalline materials in zone-axis orientations, the Z-contrast image provides this atomic resolution structural map. As this direct image is generated with only the high-angle scattering, it can be used to position the electron probe with atomic precision and does not interfere with the low-angle scattering for spectroscopy.


Nanoscale ◽  
2015 ◽  
Vol 7 (46) ◽  
pp. 19732-19742 ◽  
Author(s):  
Christian F. Gervasi ◽  
Dmitry A. Kislitsyn ◽  
Thomas L. Allen ◽  
Jason D. Hackley ◽  
Ryuichiro Maruyama ◽  
...  

Visualization of electronic structure of individual ligand-free PbS nanocrystals shows trap states caused by surface reconstruction and local non-stoichiometry.


Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Author(s):  
S. J. Pennycook ◽  
P. D. Nellist ◽  
N. D. Browning ◽  
P. A. Langjahr ◽  
M. Rühle

The simultaneous use of Z-contrast imaging with parallel detection EELS in the STEM provides a powerful means for determining the atomic structure of grain boundaries. The incoherent Z-contrast image of the high atomic number columns can be directly inverted to their real space arrangement, without the use of preconceived structure models. Positions and intensities may be accurately quantified through a maximum entropy analysis. Light elements that are not visible in the Z-contrast image can be studied through EELS; their coordination polyhedra determined from the spectral fine structure. It even appears feasible to contemplate 3D structure refinement through multiple scattering calculations.The power of this approach is illustrated by the recent study of a series of SrTiC>3 bicrystals, which has provided significant insight into some of the basic issues of grain boundaries in ceramics. Figure 1 shows the structural units deduced from a set of 24°, 36° and 65° symmetric boundaries, and 24° and 45° asymmetric boundaries. It can be seen that apart from unit cells and fragments from the perfect crystal, only three units are needed to construct any arbitrary tilt boundary. For symmetric boundaries, only two units are required, each having the same Burgers, vector of a<100>. Both units are pentagons, on either the Sr or Ti sublattice, and both contain two columns of the other sublattice, imaging in positions too close for the atoms in each column to be coplanar. Each column was therefore assumed to be half full, with the pair forming a single zig-zag column. For asymmetric boundaries, crystal geometry requires two types of dislocations; the additional unit was found to have a Burgers’ vector of a<110>. Such a unit is a larger source of strain, and is especially important to the transport characteristics of cuprate superconductors. These zig-zag columns avoid the problem of like-ion repulsion; they have also been seen in TiO2 and YBa2Cu3O7-x and may be a general feature of ionic materials.


Author(s):  
M. Iwatsuki ◽  
S. Kitamura ◽  
A. Mogami

Since Binnig, Rohrer and associates observed real-space topographic images of Si(111)-7×7 and invented the scanning tunneling microscope (STM),1) the STM has been accepted as a powerful surface science instrument.Recently, many application areas for the STM have been opened up, such as atomic force microscopy (AFM), magnetic force microscopy (MFM) and others. So, the STM technology holds a great promise for the future.The great advantages of the STM are its high spatial resolution in the lateral and vertical directions on the atomic scale. However, the STM has difficulty in identifying atomic images in a desired area because it uses piezoelectric (PZT) elements as a scanner.On the other hand, the demand to observe specimens under UHV condition has grown, along with the advent of the STM technology. The requirment of UHV-STM is especially very high in to study of surface construction of semiconductors and superconducting materials on the atomic scale. In order to improve the STM image quality by keeping the specimen and tip surfaces clean, we have built a new UHV-STM (JSTM-4000XV) system which is provided with other surface analysis capability.


Sign in / Sign up

Export Citation Format

Share Document