scholarly journals Timing of the formation and migration of giant planets as constrained by CB chondrites

2016 ◽  
Vol 2 (12) ◽  
pp. e1601658 ◽  
Author(s):  
Brandon C. Johnson ◽  
Kevin J. Walsh ◽  
David A. Minton ◽  
Alexander N. Krot ◽  
Harold F. Levison

The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.

2018 ◽  
Vol 615 ◽  
pp. A175 ◽  
Author(s):  
D. Barbato ◽  
A. Sozzetti ◽  
S. Desidera ◽  
M. Damasso ◽  
A. S. Bonomo ◽  
...  

Context. The assessment of the frequency of planetary systems reproducing the solar system’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planets. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled solar system analogues – in other words, systems featuring lower-mass inner planets in the presence of long-period giant planets. Methods. We carried out combined fits of our HARPS data with literature radial velocities using differential evolution MCMC to refine the literature orbital solutions and search for additional inner planets. We then derived the survey detection limits to provide preliminary estimates of fp. Results. We generally find better constrained orbital parameters for the known planets than those found in the literature; significant updates can be especially appreciated on half of the selected planetary systems. While no additional inner planet is detected, we find evidence for previously unreported long-period massive companions in systems HD 50499 and HD 73267. We finally estimate the frequency of inner low mass (10–30 M⊕) planets in the presence of outer giant planets as fp < 9.84% for P < 150 days. Conclusions. Our preliminary estimate of fp is significantly lower than the literature values for similarly defined mass and period ranges; the lack of inner candidate planets found in our sample can also be seen as evidence corroborating the inwards-migration formation model for super-Earths and mini-Neptunes. Our results also underline the need for high-cadence and high-precision followup observations as the key to precisely determine the occurence of solar system analogues.


2019 ◽  
Vol 623 ◽  
pp. A88 ◽  
Author(s):  
Bertram Bitsch ◽  
Andre Izidoro ◽  
Anders Johansen ◽  
Sean N. Raymond ◽  
Alessandro Morbidelli ◽  
...  

Giant planets migrate though the protoplanetary disc as they grow their solid core and attract their gaseous envelope. Previously, we have studied the growth and migration of an isolated planet in an evolving disc. Here, we generalise such models to include the mutual gravitational interaction between a high number of growing planetary bodies. We have investigated how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20–40 AU when using nominal type-I and type-II migration rates and a pebble flux of approximately 100–200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30 AU migrate into the inner system (rP < 1AU). There they form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explored slower migration rates which allow the formation of gas giants from embryos originating from the 5–10 AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. These giant planets can also form in discs with lower pebbles fluxes (50–100 Earth masses per Myr). We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. In our model, giant planet growth requires a sufficiently high pebble flux to enable growth to out-compete migration. An even higher pebble flux produces systems with multiple gas giants. We show that planetary embryos starting interior to 5 AU do not grow into gas giants, even if migration is slow and the pebble flux is large. These embryos instead grow to just a few Earth masses, the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is therefore independent of the pebble flux. Additionally, we show that the long-term evolution of our formed planetary systems can naturally produce systems with inner super-Earths and outer gas giants as well as systems of giant planets on very eccentric orbits.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


2021 ◽  
Author(s):  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Jonathan Lunine ◽  
Bernard Marty ◽  
Thomas Smith ◽  
...  

&lt;p&gt;The current composition of giant planet atmospheres provides information on how such planets formed, and on the origin of the solid building blocks that contributed to their formation. Noble gas abundances and their isotope ratios are among the most valuable pieces of evidence for tracing the origin of the materials from which the giant planets formed. In this review we first outline the current state of knowledge for heavy element abundances in the giant planets and explain what is currently understood about the reservoirs of icy building blocks that could have contributed to the formation of the Ice Giants. We then outline how noble gas isotope ratios have provided details on the original sources of noble gases in various materials throughout the solar system. We follow this with a discussion on how noble gases are trapped in ice and rock that later became the building blocks for the giant planets and how the heavy element abundances could have been locally enriched in the protosolar nebula. We then provide a review of the current state of knowledge of noble gas abundances and isotope ratios in various solar system reservoirs, and discuss measurements needed to understand the origin of the ice giants. Finally, we outline how formation and interior evolution will influence the noble gas abundances and isotope ratios observed in the ice giants today. Measurements that a future atmospheric probe will need to make include (1) the &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He isotope ratio to help constrain the protosolar D/H and &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He; (2) the &lt;sup&gt;20&lt;/sup&gt;Ne/&lt;sup&gt;22&lt;/sup&gt;Ne and &lt;sup&gt;21&lt;/sup&gt;Ne/&lt;sup&gt;22&lt;/sup&gt;Ne to separate primordial noble gas reservoirs similar to the approach used in studying meteorites; (3) the Kr/Ar and Xe/Ar to determine if the building blocks were Jupiter-like or similar to 67P/C-G and Chondrites; (4) the krypton isotope ratios for the first giant planet observations of these isotopes; and (5) the xenon isotopes for comparison with the wide range of values represented by solar system reservoirs.&lt;/p&gt;&lt;p&gt;Mandt, K. E., Mousis, O., Lunine, J., Marty, B., Smith, T., Luspay-Kuti, A., &amp; Aguichine, A. (2020). Tracing the origins of the ice giants through noble gas isotopic composition. Space Science Reviews, 216(5), 1-37.&lt;/p&gt;


2020 ◽  
Vol 497 (2) ◽  
pp. 1807-1825
Author(s):  
Katja Stock ◽  
Maxwell X Cai ◽  
Rainer Spurzem ◽  
M B N Kouwenhoven ◽  
Simon Portegies Zwart

ABSTRACT Despite the discovery of thousands of exoplanets in recent years, the number of known exoplanets in star clusters remains tiny. This may be a consequence of close stellar encounters perturbing the dynamical evolution of planetary systems in these clusters. Here, we present the results from direct N-body simulations of multiplanetary systems embedded in star clusters containing N = 8k, 16k, 32k, and 64k stars. The planetary systems, which consist of the four Solar system giant planets Jupiter, Saturn, Uranus, and Neptune, are initialized in different orbital configurations, to study the effect of the system architecture on the dynamical evolution of the entire planetary system, and on the escape rate of the individual planets. We find that the current orbital parameters of the Solar system giants (with initially circular orbits, as well as with present-day eccentricities) and a slightly more compact configuration, have a high resilience against stellar perturbations. A configuration with initial mean-motion resonances of 3:2, 3:2, and 5:4 between the planets, which is inspired by the Nice model, and for which the two outermost planets are usually ejected within the first 105 yr, is in many cases stabilized due to the removal of the resonances by external stellar perturbation and by the rapid ejection of at least one planet. Assigning all planets the same mass of 1 MJup almost equalizes the survival fractions. Our simulations reproduce the broad diversity amongst observed exoplanet systems. We find not only many very wide and/or eccentric orbits, but also a significant number of (stable) retrograde orbits.


1977 ◽  
Vol 39 ◽  
pp. 453-467 ◽  
Author(s):  
A. H. Delsemme

Empirical data are confronted with different hypotheses on the origin of comets. The hypotheses are classified into three categories: 1) Comets were condensed from the solar nebula and ejected later into the Oort’s cloud. 2) Comets were condensed in situ, more or less recently, on their present trajectories; 3) Reversing the arrow of time in the traditional evolution of comets. Only two hypotheses, both from the first category, are found to be in agreement with all empirical data. The first hypothesis explains the origin of the Oort’s cloud by the perturbations of the giant planets (mainly Uranus and Neptune and possibly Pluto) on a ring of proto-comets, during the final accretion stages of the solar system. The second hypothesis uses the fast mass loss of the solar nebula to expell an outer ring of proto-comets into elliptic trajectories. Although no empirical evidence requests that the Oort’s cloud be older than a few million years, its matter is not likely to be from a different reservoir than solar system stuff, and no satisfactory theory explains its formation more recently than 4,5 billion years ago.


2019 ◽  
Vol 488 (1) ◽  
pp. 1366-1376 ◽  
Author(s):  
Daohai Li ◽  
Alexander J Mustill ◽  
Melvyn B Davies

ABSTRACTStars formed in clusters can encounter other stars at close distances. In typical open clusters in the Solar neighbourhood containing hundreds or thousands of member stars, 10–20 per cent of Solar-mass member stars are expected to encounter another star at distances closer than 100 au. These close encounters strongly perturb the planetary systems, directly causing ejection of planets or their capture by the intruding star, as well as exciting the orbits. Using extensive N-body simulations, we study such fly-by encounters between two Solar system analogues, each with four giant planets from Jupiter to Neptune. We quantify the rates of loss and capture immediately after the encounter, e.g. the Neptune analogue is lost in one in four encounters within 100 au, and captured by the flying-by star in 1 in 12 encounters. We then perform long-term (up to 1 Gyr) simulations investigating the ensuing post-encounter evolution. We show that large numbers of planets are removed from systems due to planet–planet interactions and that captured planets further enhance the system instability. While encounters can initially leave a planetary system containing more planets by inserting additional ones, the long-term instability causes a net reduction in planet number. A captured planet ends up on a retrograde orbit in half of the runs in which it survives for 1Gyr; also, a planet bound to its original host star but flipped during the encounter may survive. Thus, encounters between planetary systems are a channel to create counter-rotating planets, This would happen in around 1 per cent of systems, and such planets are potentially detectable through astrometry or direct imaging.


2004 ◽  
Vol 202 ◽  
pp. 269-276
Author(s):  
Mark S. Marley ◽  
Andrew S. Ackerman

Clouds and hazes are important throughout our solar system and in the atmospheres of brown dwarfs and extrasolar giant planets. Among the brown dwarfs, clouds control the colors and spectra of the L-dwarfs; the disappearance of clouds helps herald the arrival of the T-dwarfs. The structure and composition of clouds will be among the first remote-sensing results from the direct detection of extrasolar giant planets.


Author(s):  
Alessandro Morbidelli

In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.


2016 ◽  
Vol 5 (2) ◽  
pp. 245
Author(s):  
Khilyatul Khoiriyah

This research is the literature studies that provide an introduction to the theory of the formation and early evolution of solar system and planetary systems. Theories that discussed are limit on the theory which has been closed to the truth of observation result. Topics include the structure of solar system, star formation, the structure of evolution and dispersal of protoplanetary disks, planetesimals formation, terrestrial and giant planets formation, the formation of the smaller objects in the solar system and planet migration.Penelitian ini merupakan studi literatur yang membahas tentang masalah pembentukan dan evolusi awal tata surya dan sistem keplanetan dengan memberikan konsep dasar yang ringkas. Teori-teori yang dikaji secara khusus dibatasi pada teori yang telah mendekati kebenaran dari hasil pengamatan. Topik yang dibahas adalah struktur tata surya, pembentukan bintang, struktur evolusi dan pembubaran cakram protoplanet, pembentukan planetesimal, planet terestrial dan planet raksasa, pembentukan benda-benda kecil dalam tata surya dan migrasi planet.


Sign in / Sign up

Export Citation Format

Share Document