scholarly journals Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia

2018 ◽  
Vol 4 (4) ◽  
pp. eaar2547 ◽  
Author(s):  
Yingjun Liu ◽  
Roger Seco ◽  
Saewung Kim ◽  
Alex B. Guenther ◽  
Allen H. Goldstein ◽  
...  
2003 ◽  
Vol 3 (4) ◽  
pp. 4359-4391 ◽  
Author(s):  
J. F. Hamilton ◽  
A. C. Lewis ◽  
C. Bloss ◽  
V. Wagner ◽  
A. P. Henderson ◽  
...  

Abstract. Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, p-xylene and 1,3,5-trimethyl-benzene) with hydroxyl radicals in the presence of  NOx have been investigated using comprehensive gas chromatography (GCXGC). A GCXGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE), a large volume outdoor reaction chamber in Valencia, Spain. Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 min, allowing the evolution of species to be followed over oxidation periods of 3–6 h. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards. For toluene reactions, observed oxygenated intermediates found included the co-eluting pair a-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and p-methyl benzoquinone. In the p-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCXGC for the measurement of the parent aromatics generally showed good agreement.


2003 ◽  
Vol 3 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
J. F. Hamilton ◽  
A. C. Lewis ◽  
C. Bloss ◽  
V. Wagner ◽  
A. P. Henderson ◽  
...  

Abstract. Photo-oxidation products from the reaction of a series of alkyl-benzenes, (benzene, toluene, p-xylene and 1,3,5-trimethyl-benzene) with hydroxyl radicals in the presence of NOx have been investigated using comprehensive gas chromatography (GCxGC). A GCxGC system has been developed which utilises valve modulation and independent separations as a function of both volatility and polarity. A number of carbonyl-type compounds were identified during a series of reactions carried out at the European Photoreactor (EUPHORE), a large volume outdoor reaction chamber in Valencia, Spain. Experiments were carried as part of the EXACT project (Effects of the oXidation of Aromatic Compounds in the Troposphere). Two litre chamber air samples were cryo-focused, with a sampling frequency of 30 minutes, allowing the evolution of species to be followed over oxidation periods of 3-6 hours. To facilitate product identification, several carbonyl compounds, which were possible products of the photo-oxidation, were synthesised and used as reference standards. For toluene reactions, observed oxygenated intermediates found included the co-eluting pair a-angelicalactone/4-oxo-2-pentenal, maleic anhydride, citraconic anhydride, benzaldehyde and p-methyl benzoquinone. In the p-xylene experiment, the products identified were E/Z-hex-3-en-2,5-dione and citraconic anhydride. For 1,3,5-TMB reactions, the products identified were 3,5-dimethylbenzaldehyde, 3,5-dimethyl-3H-furan-2-one and 3-methyl-5-methylene-5H-furan-2-one. Preliminary quantification was carried out on identified compounds using liquid standards. Comparison of FTIR and GCxGC for the measurement of the parent aromatics generally showed good agreement. Comparison of the concentrations observed by GCxGC to concentration-time profiles simulated using the Master Chemical Mechanism, MCMv3, demonstrates that this mechanism significantly over-predicts the concentrations of many product compounds and highlights the uncertainties which exist in our understanding of the atmospheric oxidation of aromatics.


1997 ◽  
Vol 93 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Takayuki Kitamura ◽  
Hiroyuki Fudemoto ◽  
Yuji Wada ◽  
Kei Murakoshi ◽  
Mitsuhiro Kusaba ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 6803-6842 ◽  
Author(s):  
I. J. George ◽  
A. Vlasenko ◽  
J. G. Slowik ◽  
J. P. D. Abbatt

Abstract. The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0 = 1.26 (±0.04), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.


2012 ◽  
Vol 12 (4) ◽  
pp. 9903-9943 ◽  
Author(s):  
M. L. Smith ◽  
A. K. Bertram ◽  
S. T. Martin

Abstract. The hygroscopic phase transitions of ammonium sulfate mixed with isoprene-derived secondary organic material were investigated in aerosol experiments. The organic material was produced by isoprene photo-oxidation at 40% relative humidity. The low volatility fraction of the photo-oxidation products condensed onto ammonium sulfate particles. The particle-phase organic material had oxygen-to-carbon ratios of 0.67 to 0.74 for mass concentrations of 20 to 30 μg m−3. The deliquescence, efflorescence, and phase miscibility of the mixed particles were investigated using a dual arm tandem differential mobility analyzer. The isoprene photo-oxidation products induced deviations in behavior relative to pure ammonium sulfate. Compared to an efflorescence relative humidity (ERH) of 30 to 35% for pure ammonium sulfate, efflorescence was eliminated for mixed aqueous particles having organic volume fractions ε of approximately 0.6 and greater. Compared to a deliquescence relative humidity (DRH) of 80% for pure ammonium sulfate, the DRH steadily decreased for increasing ε, approaching a DRH of 40% for ε of 0.9. Parameterizations of the DRH(ε) and ERH(ε) curves were as follows: DRH(ε)= Σ i ci,d xi valid for 0 ≤ ε ≤ 0.86 and ERH(ε)= Σ i ci,e xi valid for 0 ≤ ε ≤ 0.55 for the coefficients c0,d= 80.67, c0,e = 28.35, c1,d= −11.45, c1,e = −13.66, c2,d = 0, c2,e = 0, c3,d = 57.99, c3,e = −83.80, c4,d = −106.80, and c4,d = 0. The molecular description that is thermodynamically implied by these strongly sloped DRH(ε) and ERH(ε) curves is that the organic isoprene photo-oxidation products, the inorganic ammonium sulfate, and water form a miscible liquid phase even at low relative humidity. This phase miscibility is in contrast to the liquid-liquid separation that occurs for some other types of secondary organic material. These differences in liquid-liquid separation are consistent with a prediction recently presented in the literature that the bifurcation between liquid-liquid phase separation versus mixing depends on the oxygen-to-carbon ratio of the organic material. The conclusions are that the influence of secondary organic material on the hygroscopic properties of ammonium sulfate varies with organic composition and that the degree of oxygenation of the organic material, which is a measurable characteristic of complex organic materials, is an important variable influencing the hygroscopic properties of mixed organic-inorganic particles.


2009 ◽  
Vol 9 (3) ◽  
pp. 13629-13653 ◽  
Author(s):  
T. Karl ◽  
A. Guenther ◽  
A. Turnipseed ◽  
P. Artaxo ◽  
S. Martin

Abstract. Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e.g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian aerosol characterization experiment (AMAZE-08) we show that the production of certain OVOCs (e.g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. A recently suggested novel pathway for isoprene peroxy radicals could explain the observed discrepancy and reconcile the rapid formation of these VOCs. Furthermore, if generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in substantial underestimates of modelled OH reactivity that could explain a major fraction of the missing OH sink over forests which has previously been attributed to a missing source of primary biogenic VOCs.


2006 ◽  
Vol 514-516 ◽  
pp. 877-881 ◽  
Author(s):  
Gabriela Botelho ◽  
Arlete Queirós ◽  
Manuela A. Silva ◽  
Maria João Conceição

The photodegradation of EPDM based on dicyclopentadiene was followed by FTIR spectroscopy and the main photo-oxidation products were identified by derivatization reactions. It could be found that the photodegradation is initiated at the diene with formation of α,β–unsaturated carbonyl compounds and is then propagated to the ethylene-propylene segments. The propagation reactions are accelerated and, hence, the rate of photodegradation increases with the diene content.


Sign in / Sign up

Export Citation Format

Share Document