scholarly journals Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation

2020 ◽  
Vol 6 (18) ◽  
pp. eaay8699
Author(s):  
Philipp P. Prosseda ◽  
Jorge A. Alvarado ◽  
Biao Wang ◽  
Tia J. Kowal ◽  
Ke Ning ◽  
...  

Glaucoma is a group of progressive optic neuropathies that cause irreversible vision loss. Although elevated intraocular pressure (IOP) is associated with the development and progression of glaucoma, the mechanisms for its regulation are not well understood. Here, we have designed CIBN/CRY2-based optogenetic constructs to study phosphoinositide regulation within distinct subcellular compartments. We show that stimulation of CRY2-OCRL, an inositol 5-phosphatase, increases aqueous humor outflow and lowers IOP in vivo, which is caused by a calcium-dependent actin rearrangement of the trabecular meshwork cells. Phosphoinositide stimulation also rescues defective aqueous outflow and IOP in a Lowe syndrome mouse model but not in IFT88fl/fl mice that lack functional cilia. Thus, our study is the first to use optogenetics to regulate eye pressure and demonstrate that tight regulation of phosphoinositides is critical for aqueous humor homeostasis in both normal and diseased eyes.

1999 ◽  
Vol 277 (3) ◽  
pp. C373-C383 ◽  
Author(s):  
Luanna K. Putney ◽  
Cecile Rose T. Vibat ◽  
Martha E. O’Donnell

The trabecular meshwork (TM) of the eye plays a central role in modulating intraocular pressure by regulating aqueous humor outflow, although the mechanisms are largely unknown. We and others have shown previously that aqueous humor outflow facility is modulated by conditions that alter TM cell volume. We have also shown that the Na-K-Cl cotransport system is a primary regulator of TM cell volume and that its activity appears to be coordinated with net efflux pathways to maintain steady-state volume. However, the cellular mechanisms that regulate cotransport activity and cell volume in TM cells have yet to be elucidated. The present study was conducted to investigate the hypothesis that intracellular Cl concentration ([Cl]i) acts to regulate TM cell Na-K-Cl cotransport activity, as has been shown previously for some other cell types. We demonstrate here that the human TM cell Na-K-Cl cotransporter is highly sensitive to changes in [Cl]i. Our findings reveal a marked stimulation of Na-K-Cl cotransport activity, assessed as ouabain-insensitive, bumetanide-sensitive K influx, in TM cells following preincubation of cells with Cl-free medium as a means of reducing [Cl]i. In contrast, preincubation of cells with media containing elevated K concentrations as a means of increasing [Cl]i results in inhibition of Na-K-Cl cotransport activity. The effects of reducing [Cl]i, as well as elevating [Cl]i, on Na-K-Cl cotransport activity are concentration dependent. Furthermore, the stimulatory effect of reduced [Cl]i is additive with cell-shrinkage-induced stimulation of the cotransporter. Our studies also show that TM cell Na-K-Cl cotransport activity is altered by a variety of Cl channel modulators, presumably through changes in [Cl]i. These findings support the hypothesis that regulation of Na-K-Cl cotransport activity, and thus cell volume, by [Cl]i may participate in modulating outflow facility across the TM.


1995 ◽  
Vol 268 (4) ◽  
pp. C1067-C1074 ◽  
Author(s):  
M. E. O'Donnell ◽  
J. D. Brandt ◽  
F. R. Curry

The trabecular meshwork (TM) of the eye plays a critical role in modulating intraocular pressure (IOP) through regulation of aqueous humor outflow, although the underlying mechanisms remain unknown. Ethacrynic acid, an agent known to inhibit Na-K-Cl cotransport of a number of cell types, recently has been reported to increase aqueous outflow and lower IOP through an unknown effect on the TM. In vascular endothelial cells and a variety of other cell types, the Na-K-Cl cotransporter functions to regulate intracellular volume. The present study was conducted to evaluate TM cells for the presence of Na-K-Cl cotransport activity and to test the hypothesis that modulation of cotransport activity alters intracellular volume and, consequently, permeability of the TM. We demonstrate here that bovine and human TM cells exhibit robust Na-K-Cl cotransport activity that is inhibited by bumetanide and by ethacrynic acid. Our studies also show that TM cell Na-K-Cl cotransport is modulated by a variety of hormones and neurotransmitters. Inhibition of the cotransporter either by bumetanide, ethacrynic acid, or inhibitory hormones reduces TM intracellular volume, whereas stimulatory hormones increase cell volume. In addition, shrinkage of the cells by hypertonic media stimulates cotransport activity and initiates a subsequent regulatory volume increase. Permeability of TM cell monolayers, assessed as transmonolayer flux of [14C]sucrose, is increased by hypertonicity-induced cell shrinkage and by bumetanide. These findings suggest that Na-K-Cl cotransport of TM cells is of central importance to regulation of intracellular volume and TM permeability. Defects of Na-K-Cl cotransport may underlie the pathophysiology of glaucoma.


2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


2002 ◽  
Vol 282 (1) ◽  
pp. H219-H231 ◽  
Author(s):  
A. Piech ◽  
P. E. Massart ◽  
C. Dessy ◽  
O. Feron ◽  
X. Havaux ◽  
...  

Because nitric oxide (NO) regulates cardiac and vessel contraction, we compared the expression and activity of the endothelial NO synthase (eNOS) and caveolin, which tonically inhibits eNOS in normal and hypertrophic cardiomyopathic hearts. NOS activity (l-[3H]citrulline formation), eNOS immunostaining, and caveolin abundance were measured in heart tissue of 23 mongrel dogs before and at 3 and 7 wk of perinephritic hypertension (PHT). Hemodynamic parameters in vivo and endothelial NO-dependent relaxation of macro- and coronary microvessels in vitro were assessed in the same animals. eNOS immunostaining and total calcium-dependent NOS activity decreased at 7 wk in all four heart cavities (in left ventricle, from 17.0 ± 1.3 to 0.2 ± 0.2 fmol · min−1 · mg protein−1, P < 0.001). Caveolin-1 and -3 also decreased in PHT dog hearts. Accordingly, basal vascular tone was preserved, but maximal endothelial NO-dependent relaxation was impaired in all vessels from 7-wk PHT dogs. The latter had preserved systolic function but impaired diastolic relaxation [relaxation time constant ( T 1), 25.1 ± 0.9 vs. 22.0 ± 1 ms in controls; P < 0.05]. Peripheral infusion of the NOS inhibitor N G -nitro-l-arginine methyl ester increased mean aortic pressure in both groups and reduced diastolic ( T 1, 31.9 ± 1.4 ms) and systolic function in PHT dogs (DP40, 47.5 ± 2.5 vs. 59.4 ± 3.8 s−1 in control animals). In conclusion, both eNOS and caveolin proteins are decreased in the hypertrophic hearts of PHT dogs. This is associated with altered maximal (but not basal) vascular relaxation and impaired diastolic function. Further degradation of cardiac function after NOS inhibition suggests a critical role of residual NOS activity, probably supported by the concurrent downregulation of caveolin.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1508-1508 ◽  
Author(s):  
Shawn M. Jobe ◽  
Katina M. Wilson ◽  
Lori Leo ◽  
Jeffery D. Molkentin ◽  
Steven R. Lentz ◽  
...  

Abstract Dual stimulation of platelets with thrombin and collagen results in the formation of a unique subpopulation of highly activated platelets. Characteristics of the highly activated platelet subpopulation includeincreased surface retention of procoagulant alpha granule proteins,high-level phosphatidylserine (PS) externalization, andmodulation of the fibrinogen receptor αIIbβ3 as evidenced by their decreased recognition by antibodies to activated αIIbβ3 such as PAC-1 and JON/A. Formation of the highly activated platelet subpopulation is closely correlated with a rapid loss of mitochondrial transmembrane potential (ΔΨm), a marker of MPTP formation. To test whether formation of the MPTP might regulate the development of the highly activated platelet subpopulation, platelet activation responses were examined in the presence of inhibitors and activators of MPTP formation. Cyclosporine, an inhibitor of MPTP formation, inhibited both PS externalization and αIIbβ3 modulation following dual stimulation with thrombin and the glycoprotein VI agonist convulxin (58 ± 4% vs. 9 ± 3%, p<0.01). Conversely, thrombin stimulation of platelets in the presence of H2O2 (100μM), an MPTP activator, increased PS externalization and αIIbβ3 modulation relative to platelets stimulated with thrombin alone (11 ± 3% vs. 48 ± 6%, p<0.05). Platelet activation responses were examined in cyclophilin D null (CypD −/−) mice, which have marked impairment of MPTP formation. Following dual agonist stimulation with thrombin and convulxin, both αIIbβ3 modulation and platelet PS externalization were significantly abrogated in CypD −/− platelets relative to wild type (7 ± 1% vs. 69 ± 1%, p<0.01). Alpha granule release, however, was unaffected in the absence of CypD. In vitro tests of platelet function similarly demonstrated that CypD −/− platelets had marked impairment of platelet prothrombinase activity relative to wild-type platelets after stimulation with thrombin and convulxin, but normal platelet aggregation responses. We then tested the hypothesis that CypD −/− mice would have an altered thrombotic response to arterial injury. Following photochemical injury of the carotid artery endothelium, a stable occlusive thrombus formed more rapidly in CypD −/− than in wild-type mice (16 ± 2 vs. 32 ± 7 min, p<0.05). Tail-bleeding time was unaffected. These results strongly implicate cyclophilin D and the MPTP as critical regulators of the subset of platelet activation responses occurring in the highly activated platelet subpopulation and suggest that activation of this novel platelet mitochondrial signaling pathway might play an important role in the regulation of the thrombotic response in vivo.


1995 ◽  
Vol 15 (7) ◽  
pp. 3857-3863 ◽  
Author(s):  
D A Fruman ◽  
S Y Pai ◽  
S J Burakoff ◽  
B E Bierer

The calmodulin-stimulated phosphatase calcineurin plays a critical role in calcium-dependent T-lymphocyte activation pathways. Here, we report the identification of a missense mutation in the calcineurin A alpha gene expressed by EL4 T-lymphoma cells. This mutation changes an evolutionarily conserved aspartic acid to asparagine within the autoinhibitory domain of the calcineurin A alpha protein. A comparison of wild-type and mutant autoinhibitory peptides indicates that this amino acid substitution greatly reduces inhibition of calcineurin phosphatase activity. Additional peptide inhibition studies support a pseudosubstrate model of autoinhibitory function, in which the conserved aspartic acid residue may serve as a molecular mimic of either phosphoserine or phosphothreonine. Expression of the mutant calcineurin appears to affect cellular signal transduction pathways, as EL4 cells can be activated by suboptimal concentrations of calcium ionophore in the presence of phorbol esters. Moreover, this phenotype can be transferred to Jurkat T cells by transfection of the mutated calcineurin gene. These findings implicate a conserved aspartic acid in the mechanism of calcineurin autoinhibition and suggest that mutation of this residue is associated with aberrant calcium-dependent signaling in vivo.


2017 ◽  
Author(s):  
Xiangjun She ◽  
Xinmin Lu ◽  
Tong Li ◽  
Junran Sun ◽  
Jian Liang ◽  
...  

AbstractPhotoreceptor degeneration is a leading cause of visual impairment worldwide. Separation of neurosensory retina from the underlying retinal pigment epithelium is a prominent feature preceding photoreceptor degeneration in a variety of retinal diseases. Although ophthalmic surgeries have been well developed to restore retinal structures, post-op patients usually experience progressive photoreceptor degeneration and irreversible vision loss that is incurable at present. Previous studies point to a critical role of mitochondria-mediated apoptotic pathway in photoreceptor degeneration, but the upstream triggers remain largely unexplored. In this study, we show that after experimental RD induction, photoreceptors activate dynamin-related protein 1 (Drp1)-dependent mitochondrial fission pathway and subsequent apoptotic cascades. Mechanistically, endogenous ROS is necessary for Drp1 activation in vivo and exogenous ROS insult is sufficient to activate Drp1-dependent mitochondrial fission in cultured photoreceptors. Accordingly, inhibition of Drp1 activity effectively preserves mitochondrial integrity and rescues photoreceptors. Collectively, our data delineates a ROS-Drp1-mitochondria axis that promotes photoreceptor degeneration in retinal diseased models.


2011 ◽  
Vol 227 (1) ◽  
pp. 172-182 ◽  
Author(s):  
Ang Li ◽  
Chi Ting Leung ◽  
Kim Peterson-Yantorno ◽  
W. Daniel Stamer ◽  
Claire H. Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document