scholarly journals Designing exceptional gas-separation polymer membranes using machine learning

2020 ◽  
Vol 6 (20) ◽  
pp. eaaz4301 ◽  
Author(s):  
J. Wesley Barnett ◽  
Connor R. Bilchak ◽  
Yiwen Wang ◽  
Brian C. Benicewicz ◽  
Laura A. Murdock ◽  
...  

The field of polymer membrane design is primarily based on empirical observation, which limits discovery of new materials optimized for separating a given gas pair. Instead of relying on exhaustive experimental investigations, we trained a machine learning (ML) algorithm, using a topological, path-based hash of the polymer repeating unit. We used a limited set of experimental gas permeability data for six different gases in ~700 polymeric constructs that have been measured to date to predict the gas-separation behavior of over 11,000 homopolymers not previously tested for these properties. To test the algorithm’s accuracy, we synthesized two of the most promising polymer membranes predicted by this approach and found that they exceeded the upper bound for CO2/CH4 separation performance. This ML technique, which is trained using a relatively small body of experimental data (and no simulation data), evidently represents an innovative means of exploring the vast phase space available for polymer membrane design.

RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5086-5095
Author(s):  
Shuli Wang ◽  
Xiaohua Tong ◽  
Chunbo Wang ◽  
Xiaocui Han ◽  
Sizhuo Jin ◽  
...  

Effect of substituents on the dihedral angle and chain packing plays a critical role in the enhancement in the gas separation performance of polymer membranes.


2021 ◽  
Author(s):  
Jason Yang ◽  
Lei Tao ◽  
Jinlong He ◽  
Jeffrey McCutcheon ◽  
Ying Li

Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research on membrane technologies, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine-learning (ML) implementation for the discovery of innovative polymers with ideal separation performance. Specifically, multitask ML models are trained on available experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract chemical heuristics for membrane design, through Shapley Additive exPlanations (SHAP) analysis. We then screen over nine million hypothetical polymers through our models and identify thousands of candidates that lie well above current performance upper bounds. Notably, we discover hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrer, respectively, orders of magnitude higher than currently available polymeric membranes. These hypothetical polymers are capable of overcoming undesirable trade-off relationship between permeability and selectivity, thus significantly expanding the currently limited library of polymer membranes for highly efficient gas separations. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.


2020 ◽  
Vol 10 (2) ◽  
pp. 213-219
Author(s):  
Putu Doddy Sutrisna ◽  
Ronaldo Pangestu Hadi ◽  
Jonathan Siswanto ◽  
Giovanni J Prabowo

Biogas is a renewable energy that has been explored widely in Indonesia to substitute non-renewable energy. However, the presence of certain gas, such as carbon dioxide (CO2), can decrease the calorific value and generate greenhouse gas. Hence, the separation of CO2 from methane (CH4) occurs as a crucial step to improve the utilization of biogas. The separation of CH4/CO2 can be conducted using a polymeric membrane that needs no chemical, hence considered as an environmentally friendly technique. However, the utilization of polymeric membrane in gas separation processes is hampered by the trade-off between gas throughput and selectivity. To solve this problem, the incorporation of inorganic particles, such as Zeolitic Imidazolate Framework-8 (ZIF-8) particles, into the polymer matrix to improve the gas separation performance of the membrane has been conducted recently. In this research, ZIF-8 has been incorporated into Polysulfone matrix to form ZIF-8/Polysulfone-based membrane by simple blending and phase inversion techniques in flat sheet configuration. The pure gas permeation tests showed an increase in gas permeability (26 Barrer compared to 17 Barrer) after the inclusion of ZIF-8 particles with a slight decrease in CO2/CH4selectivity for particle loading more than 15wt. %. Therefore, the membrane with 15wt. % of particles showed the best performance in terms of gas selectivity. This result was due to the aggregation of ZIF-8 particles at particle loading higher than 15wt. %. Chemical analysis indicated an interaction between filler and polymer, and there were increases in the degree of crystallinity after the incorporation of ZIF-8.


2020 ◽  
Author(s):  
Qi Yuan ◽  
Mariagiulia Longo ◽  
Aaron Thornton ◽  
Neil B. McKeown ◽  
Bibiana Comesana-Gandara ◽  
...  

<p><a>Polymer-based membranes can be used for energy efficient gas separations. Successful exploitation of new materials requires accurate knowledge of the transport properties of all gases of interest. An open source database of such data is of significant benefit to the research community. The Membrane Society of Australasia (https://membrane-australasia.org/) hosts a database for experimentally measured and reported polymer gas permeabilities. However, the database is incomplete, limiting its potential use as a research tool. Here, missing values in the database were filled using machine learning (ML). The ML model was validated against gas permeability measurements that were not recorded in the database. Through imputing the missing data, it is possible to re-analyse historical polymers and look for potential “missed” candidates with promising gas selectivity. In addition, for systems with limited experimental data, ML using sparse features was performed, and we suggest that once the permeability of CO<sub>2</sub> and/or O<sub>2</sub> for a polymer has been measured, most other gas permeabilities and selectivities, including those for CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub>, can be quantitatively estimated. This early insight into the gas permeability of a new system can be used at an initial stage of experimental measurements to rapidly identify polymer membranes worth further investigation.</a></p>


2020 ◽  
Vol 11 (25) ◽  
pp. 4172-4179
Author(s):  
Xiaofan Hu ◽  
Hongliang Mu ◽  
Jie Miao ◽  
Yao Lu ◽  
Xianwei Wang ◽  
...  

Intrinsically microporous polyimides with high gas permeability and favorable selectivity were prepared from a bulky, rigid, and sterically hindered dianhydride, 3,3′-di-t-butyl-2,2′-dimethoxy-[1,1′-binaphthalene]-6,6′,7,7′,-tetracarboxylic dianhydride.


2013 ◽  
Vol 448-453 ◽  
pp. 765-770 ◽  
Author(s):  
Li Zhe Liang ◽  
Quan Gan ◽  
Paul Nancarrow

In recent years, the utilisation of ionic liquids supported on porous polymer membranes has been demonstrated to enhance gas separation performance by improving both permeability and selectivity for several industrially-relevant gas mixtures. However, the use of such supported ionic liquid membranes (SILMs) is normally not feasible at elevated process temperatures due to the resulting decrease in ionic liquid viscosity, which can lead to increased loss of ionic liquid from the membrane support during operation. In addition, many of the polymer membranes typically used in SILMs exhibit relatively poor mechanical and thermal stabilities at high temperatures. To overcome these problems associated with SILMs, thermally-stable composite ionic liquid and polymer membranes (CILPMs) have been fabricated in this study, thus exploiting the beneficial properties of ionic liquids for gas separation at elevated temperatures. Poly (pyromellitimide-co-4,4-oxydianiline) (PMDA-ODA PI) in combination with the ionic liquid, [C4mi [NTf2] were used to fabricate the CILPMs. A measurement rig was designed and built to determine permeabilities and selectivities of the CILPMs for H2, N2, CO, CO2 and CH4 over a range of pressures and temperatures. The fabricated CILPMs were shown to maintain excellent mechanical and thermal stability over a wide range of processing conditions. Temperature was shown to greatly affect both permeability and selectivity of the membranes, whilst pressure had less influence. The incorporation of [C4mi [NTf2] into the membranes was found to significantly increase CO2 permeation and, therefore, it is anticipated that these CILPMs hold significant potential for CO2 separation applications.


Author(s):  
Faiz Almansour ◽  
Monica Alberto ◽  
Rupesh S. Bhavsar ◽  
Xiaolei Fan ◽  
Peter M. Budd ◽  
...  

AbstractPhysical aging is currently a major obstacle for the commercialization of PIM-1 membranes for gas separation applications. A well-known approach to reversing physical aging effects of PIM-1 membranes at laboratory scale is soaking them in lower alcohols, such as methanol and ethanol. However, this procedure does not seem applicable at industrial level, and other strategies must be investigated. In this work, a regeneration method with alcohol vapors (ethanol or methanol) was developed to recover permeability of aged PIM-1 membranes, in comparison with the conventional soaking-in-liquid approach. The gas permeability and separation performance, before and post the regeneration methods, were assessed using a binary mixture of CO2 and CH4 (1:1, v:v). Our results show that an 8-hour methanol vapor treatment was sufficient to recover the original gas permeability, reaching a CO2 permeability > 7000 barrer.


2021 ◽  
Vol 333 ◽  
pp. 04008
Author(s):  
Yongsheng Liu ◽  
Kyosuke Takata ◽  
Yu Mukai ◽  
Hidetoshi Kita ◽  
Kazuhiro Tanaka

The commercial SAPO-34 zeolite with 0.38 nm pore size and ZIF-8 particles with 0.34 nm aperture size were separately dispersed into different polymer matrix, to prepare the mixed matrix membranes (MMMs) for gas separation. The dispersed situation of the SAPO-34 and ZIF-8 particles in matrix and the influence of the fillers on the separation performance of the membrane had been investigated in this study. The as-synthesized MMMs showed a better trade-off between permeability and selectivity than the pure polymer membrane and the performance could exceed or close to the upper bound line of polymer membrane for CO2 and CH4 separation. The CO2 permeability and CO2/CH4 ideal selectivity of the 6FDA-mDAT MMM containing 40 wt% SAPO-34 zeolite was 190 barrer and ca. 60, respectively. The 6FDA-TrMPD based MMMs containing 20 wt% ZIF-8 provided a permeability of C3H6 and an ideal selectivity of C3H6/C3H8 at 24 barrer and ca. 17, respectively. These separation performances were in a suitable agreement of the theoretical value from Maxwell model.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1241 ◽  
Author(s):  
Silvio Neumann ◽  
Gisela Bengtson ◽  
David Meis ◽  
Volkan Filiz

The synthesis of polymers of intrinsic microporosity (PIM) modified with azide groups, the cross linkage by nitrene reaction and their performance as gas separation membranes are reported. The azide modification of the spirobisindane units in the polymer backbone was done by post functionalization of methylated spirobisindane containing polymers. These polymers differ in distribution and concentration of the azide group containing spirobisindane units by applying perfectly alternating and randomly distributed copolymers along the polymer chains. To investigate the influence of concentration of the azide groups, additionally the homopolymer of methylated spirobisindane was synthesized and subjected to identical treatments and characterizations as both copolymers. Cross linkage by nitrene reaction was examined by different temperature treatments at 150, 200, 250 and 300 °C. Characterization of the new polymers was performed by NMR, SEC and FT-IR. Furthermore, the crosslinking process was investigated by means of solid state NMR, TGA-FTIR, DSC and isoconversional kinetic analysis performed with TGA. Gas permeability of CO2, N2, CH4, H2 and O2 was determined by time lag experiments and ideal selectivities for several gas pairs were calculated. The two azide groups per repeating unit degrade during thermal treatments by release of nitrogen and form mechanically stable PIM networks, leading to an increase in gas permeability while selectivity remained nearly constant. Measured diffusivity and solubility coefficients revealed differences in the formation of free volume elements depending on distribution and concentration of the azide groups. Aging studies over about five months were performed and physical aging rates (βP) were evaluated with regard to the concentration and distribution of curable azide functionalities. Subsequently, the enhanced sieving effect during aging resulted in membrane materials that surpassed the Robeson upper bound in selected gas pairs.


Sign in / Sign up

Export Citation Format

Share Document