scholarly journals Role of mechanical cues and hypoxia on the growth of tumor cells in strong and weak confinement: A dual in vitro–in silico approach

2020 ◽  
Vol 6 (13) ◽  
pp. eaaz7130 ◽  
Author(s):  
V. Le Maout ◽  
K. Alessandri ◽  
B. Gurchenkov ◽  
H. Bertin ◽  
P. Nassoy ◽  
...  

Characterization of tumor growth dynamics is of major importance for cancer understanding. By contrast with phenomenological approaches, mechanistic modeling can facilitate disclosing underlying tumor mechanisms and lead to identification of physical factors affecting proliferation and invasive behavior. Current mathematical models are often formulated at the tissue or organ scale with the scope of a direct clinical usefulness. Consequently, these approaches remain empirical and do not allow gaining insight into the tumor properties at the scale of small cell aggregates. Here, experimental and numerical studies of the dynamics of tumor aggregates are performed to propose a physics-based mathematical model as a general framework to investigate tumor microenvironment. The quantitative data extracted from the cellular capsule technology microfluidic experiments allow a thorough quantitative comparison with in silico experiments. This dual approach demonstrates the relative impact of oxygen and external mechanical forces during the time course of tumor model progression.

2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


2011 ◽  
Vol 46 (6) ◽  
pp. 2243-2251 ◽  
Author(s):  
Juan José Ramírez-Espinosa ◽  
Maria Yolanda Rios ◽  
Sugey López-Martínez ◽  
Fabian López-Vallejo ◽  
José L. Medina-Franco ◽  
...  

2012 ◽  
Vol 123 (11) ◽  
pp. 635-647 ◽  
Author(s):  
Radko Komers ◽  
Shaunessy Rogers ◽  
Terry T. Oyama ◽  
Bei Xu ◽  
Chao-Ling Yang ◽  
...  

In the present study, we investigated the activity of the thiazide-sensitive NCC (Na+–Cl− co-transporter) in experimental metabolic syndrome and the role of insulin in NCC activation. Renal responses to the NCC inhibitor HCTZ (hydrochlorothiazide), as a measure of NCC activity in vivo, were studied in 12-week-old ZO (Zucker obese) rats, a model of the metabolic syndrome, and in ZL (Zucker lean) control animals, together with renal NCC expression and molecular markers of NCC activity, such as localization and phosphorylation. Effects of insulin were studied further in mammalian cell lines with inducible and endogenous expression of this molecule. ZO rats displayed marked hyperinsulinaemia, but no differences in plasma aldosterone, compared with ZL rats. In ZO rats, natriuretic and diuretic responses to NCC inhibition with HCTZ were enhanced compared with ZL rats, and were associated with a decrease in BP (blood pressure). ZO rats displayed enhanced Thr53 NCC phosphorylation and predominant membrane localization of both total and phosphorylated NCC, together with a different profile in expression of SPAK (Ste20-related proline/alanine-rich kinase) isoforms, and lower expression of WNK4. In vitro, insulin induced NCC phosphorylation, which was blocked by a PI3K (phosphoinositide 3-kinase) inhibitor. Insulin-induced reduction in WNK4 expression was also observed, but delayed compared with the time course of NCC phosphorylation. In summary, we report increased NCC activity in hyperinsulinaemic rodents in conjunction with the SPAK expression profile consistent with NCC activation and reduced WNK4, as well as an ability of insulin to induce NCC stimulatory phosphorylation in vitro. Together, these findings indicate that hyperinsulinaemia is an important driving force of NCC activity in the metabolic syndrome with possible consequences for BP regulation.


2020 ◽  
Vol 11 (1) ◽  
pp. 20190126 ◽  
Author(s):  
B. J. M. van Rooij ◽  
G. Závodszky ◽  
A. G. Hoekstra ◽  
D. N. Ku

The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico . In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.


Chemosphere ◽  
2019 ◽  
Vol 226 ◽  
pp. 159-165 ◽  
Author(s):  
Xiaoqing Wang ◽  
Xiangjing Meng ◽  
Fei Li ◽  
Jiawang Ding ◽  
Chenglong Ji ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alonso Zavafer ◽  
Ievgeniia Iermak ◽  
Mun Hon Cheah ◽  
Wah Soon Chow

AbstractThe quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Vivek Kumar ◽  
Amit Kumar Gupta ◽  
Rajendra Kumar Shukla ◽  
Vinay Kumar Tripathi ◽  
Sadaf Jahan ◽  
...  

Abstract We demonstrate the role of molecular switching of TrkA/p75NTR signaling cascade in organophosphate pesticide-Monocrotophos (MCP) induced neurotoxicity in stem cell derived cholinergic neurons and in rat brain. Our in-silico studies reveal that MCP followed the similar pattern of binding as staurosporine and AG-879 (known inhibitors of TrkA) with TrkA protein (PDB ID: 4AOJ) at the ATP binding sites. This binding of MCP to TrkA led to the conformational change in this protein and triggers the cell death cascades. The in-silico findings are validated by observing the down regulated levels of phosphorylated TrkA and its downstream molecules viz., pERK1/2, pAkt and pCREB in MCP-exposed cells. We observe that these MCP induced alterations in pTrkA and downstream signaling molecules are found to be associated with apoptosis and injury to neurons. The down-regulation of TrkA could be linked to increased p75NTR. The in-vitro studies could be correlated in the rat model. The switching of TrkA/p75NTR signaling plays a central role in MCP-induced neural injury in rBNSCs and behavioral changes in exposed rats. Our studies significantly advance the understanding of the switching of TrkA/p75NTR that may pave the way for the application of TrkA inducer/p75NTR inhibitor for potential therapeutic intervention in various neurodegenerative disorders.


2019 ◽  
Author(s):  
R.A. Rioux ◽  
C.M. Stephens ◽  
J.P. Kerns

AbstractClarireediasp. (formerly calledSclerotinia homoeocarpa), the fungal pathogen that causes dollar spot of turfgrasses, produces oxalic acid but the role of this toxin inClarireediasp. pathogenesis is unknown. In the current study, whole plant inoculation assays were used to evaluate pathogenesis ofClarireediasp. in various model hosts and investigate the role of oxalic acid in dollar spot disease. These assays revealed that both host endogenous oxalate content and pathogen-produced oxalic acid influence the timing and magnitude of symptom development. In time-course expression analysis, oxalate oxidase and related defense-associated germin-like protein genes in creeping bentgrass showed strong up-regulation starting at 48-72 hpi, indicating that germin-like protein genes are most likely involved in defense following initial contact with the pathogen and demonstrating the importance of oxalic acid inClarireediasp. pathogenesis. Overall, the results of these studies suggest that oxalic acid and host endogenous oxalate content are important for pathogenesis byClarireediasp. and may be associated with the transition from biotrophy to necrotrophy during host infection.


2019 ◽  
Author(s):  
Yang Song ◽  
Ming Yang ◽  
Jianhong Zhang ◽  
Yan Sun ◽  
Ye Tao ◽  
...  

Abstract Background. Cytokines play important roles in development and prognosis of laryngeal cancer (LC). Interleukin-17 (IL-17) from a distinct subset of CD4 + T-cells may significantly induce cancer-elicited inflammation to prevent cancer cells from immune surveillance. Methods. The expression levels of IL-17 were examined among 60 patients with LC. Immunofluorescence co-localization experiments were performed to verify the localization of IL-17 and FAS/FASL in Hep-2 and Tu212 cells. IL-17 was silenced for expression in LC cell lines by siRNA techniques for determination of the role of IL-17 in LC. Results. In our LC patients, cytokines were dysregulated in LC tissues compared with normal tissues. We found that IL-17 was overexpressed in a cohort of 60 LC tumors paired with non-tumor tissues. Moreover, high IL-17 expression was significantly associated with advanced T category, late clinical stage, differentiation, lymph node metastasis, and disease recurrence. In addition, the time-course expression of FAS and FASL was observed after stimulation and treatment with IL-17 stimulator. Finally, in vitro experiments demonstrated that IL-17 functioned as an oncogene by inhibiting the apoptosis of LC cells via the PI3K/AKT/FAS/FASL pathways. Conclusions. Taken together, our findings for the first time demonstrate the role of IL-17 as a tumor promoter and a pro-metastatic factor in LC, indicating that IL-17 may have an oncogenic role and serve as a potential prognostic biomarker and therapeutic target in LC.


Sign in / Sign up

Export Citation Format

Share Document