scholarly journals Chemical conversion of human epidermal stem cells into intestinal goblet cells for modeling mucus-microbe interaction and therapy

2021 ◽  
Vol 7 (16) ◽  
pp. eabb2213
Author(s):  
Andong Zhao ◽  
Hua Qin ◽  
Mengli Sun ◽  
Mao Tang ◽  
Jinyu Mei ◽  
...  

Intestinal goblet cells secrete mucus layers protecting the intestinal epithelia against injuries. It is challenging to study the interaction of goblet cells, mucus layers, and gut microbiota because of difficulty in producing goblet cells and mucus models. We generate intestinal goblet cells from human epidermal stem cells with two small molecular inhibitors Repsox and CHIR99021 in the presence of basic fibroblast growth factor and bone morphogenetic protein 4 at high efficiency (~95%) of conversion for a short time (6 to 8 days). Induced goblet cells are functional to secrete mucus, deliver fluorescent antigen, and form mucus layers modeling the mucus-microbe interaction in vitro. Transplantation of induced goblet cells and oral administration of chemical induction media promote the repair of the intestinal epithelia in a colitis mouse model. Thus, induced goblet cells can be used for investigating mucus-microbe interaction, and chemical cocktails may act as drugs for repairing the intestinal epithelia.

1996 ◽  
Vol 91 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P. H. Jones

1. The keratinocytes in human epidermis are constantly turned over and replaced by a population of stem cells located in the basal epidermal layer. Until recently there were no markers allowing the isolation of viable epidermal stem cells. However, it has now been shown that epidermal stem cells can be isolated both in vitro and direct from the epidermis as they express high levels of functional β1 integrin family receptors for extracellular matrix proteins. 2. The evidence for integrins as stem cell markers and the insights that have been gained into stem cell behaviour are reviewed.


2019 ◽  
Vol 28 (12) ◽  
pp. 1686-1699 ◽  
Author(s):  
Chongfeng Chen ◽  
Yujia Yang ◽  
Yue Yao

Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic encephalopathy (HIE). However, the therapeutic effects of HBO and its associated mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone morphogenetic protein (BMP) play important roles in mammalian nervous system development. The present study examined whether HBO stimulates the differentiation of neural stem cells (NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with the advantage of reducing the number of astrocytes. These effects were most pronounced when these two were combined together. In addition, the expression of Wnt3a, BMP2, and β-catenin nuclear proteins were increased after HBO treatment. However, blockade of Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve as a potential therapeutic strategy for treating HIE.


2013 ◽  
Vol 19 (10) ◽  
pp. 765-773 ◽  
Author(s):  
Beili Zhu ◽  
James Smith ◽  
Martin L. Yarmush ◽  
Yaakov Nahmias ◽  
Brian J. Kirby ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Haoyu Wu ◽  
Zhi Peng ◽  
Ying Xu ◽  
Zixuan Sheng ◽  
Yanshan Liu ◽  
...  

Abstract Background Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. Methods Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. Results modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. Conclusions These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


2021 ◽  
Author(s):  
Lea Flippe ◽  
Anne Gaignerie ◽  
Celine Serazin ◽  
Olivier Baron ◽  
Xavier Saulquin ◽  
...  

Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells and lack of product standardization have limited its uses in the clinic. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinic access. However, despite their potential, the feasibility and functionality of T-cells differentiated from hPSCs needs better comprehension before moving to the clinic. In this study, we generated human induced pluripotent stem cells from T-cells (T-iPSCs) allowing preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated with high efficiency hematopoietic progenitor stem cells (HPSCs), capable of self-renewal and differentiation into any cell blood type, and then DN3a thymic progenitors from several T-iPSC lines. To better comprehend differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had a very similar profile to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, with this approach, we were able to regenerate precursors of therapeutic human T cells to potentially treat a wide number of diseases.


2010 ◽  
Vol 299 (6) ◽  
pp. C1335-C1344 ◽  
Author(s):  
Mingjie Tong ◽  
Jeannie L. Hernandez ◽  
Erin K. Purcell ◽  
Richard A. Altschuler ◽  
R. Keith Duncan

A mouse embryonic stem (ES) cell line containing an inducible transgene for the proneural gene Neurog1 has been used to generate glutamatergic neurons at a high efficiency. The present study used in vitro electrophysiology to establish the timeline for acquiring a functional neuronal phenotype in Neurog1-induced cells exhibiting a neuronal morphology. TTX-sensitive action potentials could be evoked from over 80% of the cells after only 4.5 days in vitro (DIV). These cells uniformly showed rapidly adapting responses to current injection, firing one to three action potentials at the onset of the stimulus. In the absence of Neurog1, a limited number of ES cells adopted a neuronal morphology, but these cells displayed slow calcium depolarizations rather than sodium-based spikes. Voltage-gated Na+, K+, and Ca2+ currents were present in nearly all induced cells as early as 4.5 DIV. The voltage-dependent properties of these currents changed little from 4 to 12 DIV with half-activation voltage varying by <10 mV for any current type throughout the culture period. This study demonstrates that forced expression of proneural genes can induce ES cells to quickly acquire a functional neuronal phenotype with mature electrophysiological properties. Transient overexpression of Neurog1 may be used in neural repair strategies that require the rapid induction of functional neurons from pluripotent stem cells.


Sign in / Sign up

Export Citation Format

Share Document