scholarly journals A dielectric metasurface optical chip for the generation of cold atoms

2020 ◽  
Vol 6 (31) ◽  
pp. eabb6667
Author(s):  
Lingxiao Zhu ◽  
Xuan Liu ◽  
Basudeb Sain ◽  
Mengyao Wang ◽  
Christian Schlickriede ◽  
...  

Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this study, we report on a novel scheme that uses a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers ~107 and temperatures (about 35 μK) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress toward fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing, and other areas.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
William Dubosclard ◽  
Seungjin Kim ◽  
Carlos L. Garrido Alzar

AbstractCold atom quantum sensors based on atom interferometry are among the most accurate instruments used in fundamental physics, metrology, and foreseen for autonomous inertial navigation. However, they typically have optically complex, cumbersome, and low-bandwidth atom detection systems, limiting their practical applications. Here, we demonstrate an enabling technology for high-bandwidth, compact, and nondestructive detection of cold atoms, using microwave radiation. We measure the reflected microwave signal to coherently and distinctly detect the population of single quantum states with a bandwidth close to 30 kHz and a design destructivity that we set to 0.04%. We use a horn antenna and free-falling molasses cooled atoms in order to demonstrate the feasibility of this technique in conventional cold atom interferometers. This technology, combined with coplanar waveguides used as microwave sources, provides a basic design building block for detection in future atom chip-based compact quantum inertial sensors.


2020 ◽  
Vol 9 (5) ◽  
pp. 221-225
Author(s):  
Ravi Kumar ◽  
Ana Rakonjac

AbstractAtom interferometry is one of the most promising technologies for high precision measurements. It has the potential to revolutionise many different sectors, such as navigation and positioning, resource exploration, geophysical studies, and fundamental physics. After decades of research in the field of cold atoms, the technology has reached a stage where commercialisation of cold atom interferometers has become possible. This article describes recent developments, challenges, and prospects for quantum sensors for inertial sensing based on cold atom interferometry techniques.


Photoniques ◽  
2021 ◽  
pp. 44-48
Author(s):  
Toeno Van Der Sar ◽  
Tim Hugo Taminiau ◽  
Ronald Hanson

Optically accessible spins associated with defects in diamond provide a versatile platform for quantum science and technology. These spins combine multiple key characteristics, including long quantum coherence times, operation up to room temperature, and the capability to create long-range entanglement links through photons. These unique properties have propelled spins in diamond to the forefront of quantum sensing, quantum computation and simulation, and quantum networks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Árpád Kurkó ◽  
Peter Domokos ◽  
András Vukics ◽  
Thomas Bækkegaard ◽  
Nikolaj Thomas Zinner ◽  
...  

AbstractTrapped atomic ensembles are convenient systems for quantum information storage in the long-lived sublevels of the electronic ground state and its conversion to propagating optical photons via stimulated Raman processes. Here we investigate a phase-matched emission of photons from a coherently prepared atomic ensemble. We consider an ensemble of cold atoms in an elongated harmonic trap with normal density distribution, and determine the parameters of paraxial optics to match the mode geometry of the emitted radiation and optimally collect it into an optical waveguide.


Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1003-1014 ◽  
Author(s):  
Yuttana Intaravanne ◽  
Xianzhong Chen

AbstractLike amplitude, phase and frequency, polarization is one of the fundamental properties of light, which can be used to record, process and store information. Optical metasurfaces are ultrathin inhomogeneous media with planar nanostructures that can manipulate the optical properties of light at the subwavelength scale, which have become a current subject of intense research due to the desirable control of light propagation. The unprecedented capability of optical metasurfaces in the manipulation of the light’s polarization at subwavelength resolution has provided an unusual approach for polarization detection and arbitrary manipulation of polarization profiles. A compact metasurface platform has been demonstrated to detect polarization information of a light beam and to arbitrarily engineer a polarization profile that is very difficult or impossible to realize with conventional optical elements. This review will focus on the recent progress on ultrathin metasurface devices for polarization detection and realization of customized polarization profiles. Optical metasurfaces have provided new opportunities for polarization detection and manipulation, which can facilitate real-world deployment of polarization-related devices and systems in various research fields, including sensing, imaging, encryption, optical communications, quantum science, and fundamental physics.


2014 ◽  
Vol 28 (14) ◽  
pp. 1450116 ◽  
Author(s):  
Ben-Chang Zheng ◽  
Hua-Dong Cheng ◽  
Yan-Ling Meng ◽  
Peng Liu ◽  
Xiu-Mei Wang ◽  
...  

An integrating sphere with a diameter of 10 cm is developed for cooling atoms. The maximum number of 2 × 1010 cold atoms is obtained from a background vapor with 220 mW cooling laser power. The cold atom number can be increased by further increasing the cooling power. Such cold atom source would have potential use for Raman–Ramsey atomic clock with good signal-to-noise ratio (SNR).


Author(s):  
L. Hollberg ◽  
E. H. Cornell ◽  
A. Abdelrahmann

Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space–time science. Those systems require strain measurements at less than or equal to 10 −20 . As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total  ≤ 10 −20 , that could make an important impact in gravity wave science. This article is part of the themed issue ‘Quantum technology for the 21st century’.


2002 ◽  
Vol 16 (04) ◽  
pp. 117-125 ◽  
Author(s):  
MAHMOUD ABDEL-ATY ◽  
ABDEL-SHAFY F. OBADA

The emission probability of a cold atom in a microcavity when its center-of-mass motion is described quantum mechanically is presented, but is distinguished from other treatments by the inclusion of the spatial variation along the cavity axis. In particular, the mesa mode cavity profile is considered. The quantum theory of the one-photon mazer is constructed in the framework of the dressed-state coordinate formalism. Simple expressions for the atomic populations, the cavity photon statistics, and the reflection and transmission probabilities are given for any initial state of the atom-field system. The general conclusions reached are illustrated by numerical results.


2020 ◽  
Vol 12 (4) ◽  
pp. 539-549
Author(s):  
Diviya Devani ◽  
Stephen Maddox ◽  
Ryan Renshaw ◽  
Nigel Cox ◽  
Helen Sweeney ◽  
...  

Abstract “Cold atoms” can be used as ultra-sensitive sensors for measuring accelerations and are capable of mapping changes in the strength of gravity across the surface of the Earth. They could offer significant benefits to existing space based gravity sensing capabilities. Gravity sensors in space are already used for many Earth observation applications including monitoring polar ice mass, ocean currents and sea level. Cold atom sensors could enable higher resolution measurements which would allow monitoring of smaller water sources and discovery of new underground natural resources which are currently undetectable. The adoption of cold atom technology is constrained by low technology readiness level (TRL). Teledyne e2v and its partners are addressing this maturity gap through project Cold Atom Space PAyload (CASPA) which is an Innovate UK and Engineering and Physical Sciences Research Council (EPSRC) funded project, involving the University of Birmingham as science lead, XCAM, Clyde Space, Covesion, Gooch & Housego, and the University of Southampton. Through the CASPA project the consortium have built and vibration tested a 6U (approximate dimensions: 100 × 200 × 300 mm) cube Satellite (CubeSat) that is capable of laser cooling atoms down to 100’s of micro kelvin, as a pre-cursor to gravity sensors for future Earth observation missions.


Sign in / Sign up

Export Citation Format

Share Document