scholarly journals A unified vegetation index for quantifying the terrestrial biosphere

2021 ◽  
Vol 7 (9) ◽  
pp. eabc7447
Author(s):  
Gustau Camps-Valls ◽  
Manuel Campos-Taberner ◽  
Álvaro Moreno-Martínez ◽  
Sophia Walther ◽  
Grégory Duveiller ◽  
...  

Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statistical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change.

2021 ◽  
Author(s):  
Gustau Camps-Valls ◽  
Manuel Campos-Taberner ◽  
Alvaro Moreno-Martinez ◽  
Sophia Walther ◽  
Grégory Duveiller ◽  
...  

<p>Vegetation indices are the most widely used tool in remote sensing and multispectral imaging applications. This paper introduces a nonlinear generalization of the broad family of vegetation indices based on spectral band differences and ratios. The presented indices exploit all higher-order relations of the involved spectral channels, are easy to derive and use, and give some insight on problem complexity. The framework is illustrated to generalize the widely adopted Normalized Difference Vegetation Index (NDVI). Its nonlinear generalization named, kernel NDVI (kNDVI), largely improves performance over NDVI and the recent NIRv in monitoring key vegetation parameters, showing much higher correlation with independent products, such as the MODIS leaf area index (LAI), flux tower gross primary productivity (GPP), and GOME-2 sun-induced fluorescence. The family of indices constitutes a valuable choice for many applications that require spatially explicit and time-resolved analysis of Earth observation data.</p><p><span> Reference: <strong>"<span>A Unified Vegetation Index for Quantifying the Terrestrial Biosphere</span>"</strong>, </span><span>Gustau Camps-Valls, Manuel Campos-Taberner, Álvaro Moreno-Martı́nez, Sophia Walther, Grégory Duveiller, Alessandro Cescatti, Miguel Mahecha, Jordi Muñoz-Marı́, Francisco Javier Garcı́a-Haro, Luis Guanter, John Gamon, Martin Jung, Markus Reichstein, Steven W. Running. </span><em><span><span>Science Advances, in press</span></span><span>, </span> <span>2021</span> </em></p>


2020 ◽  
Vol 12 (12) ◽  
pp. 1979
Author(s):  
Dandan Xu ◽  
Deshuai An ◽  
Xulin Guo

Leaf area index (LAI) is widely used for algorithms and modelling in the field of ecology and land surface processes. At a global scale, normalized difference vegetation index (NDVI) products generated by different remote sensing satellites, have provided more than 40 years of time series data for LAI estimation. NDVI saturation issues are reported in agriculture and forest ecosystems at high LAI values, creating a challenge when using NDVI to estimate LAI. However, NDVI saturation is not reported on LAI estimation in grasslands. Previous research implies that non-photosynthetic vegetation (NPV) reduces the accuracy of LAI estimation from NDVI and other vegetation indices. A question arises: is the absence of NDVI saturation in grasslands a result of low LAI value, or is it caused by NPV? This study aims to explore whether there is an NDVI saturation issue in mixed grassland, and how NPV may influence LAI estimation by NDVI. In addition, in-situ measured plant area index (PAI) by sensors that detect light interception through the vegetation canopy (e.g., Li-cor LAI-2000), the most widely used field LAI collection method, might create bias in LAI estimation or validation using NDVI. Thus, this study also aims to quantify the contribution of green vegetation (GV) and NPV on in-situ measured PAI. The results indicate that NDVI saturation (using the portion of NDVI only contributed by GV) exists in grassland at high LAI (LAI threshold is much lower than that reported for other ecosystems in the literature), and that the presence of NPV can override the saturation effects of NDVI used to estimate green LAI. The results also show that GV and NPV in mixed grassland explain, respectively, the 60.33% and 39.67% variation of in-situ measured PAI by LAI-2000.


2005 ◽  
Vol 62 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Maurício dos Santos Simões ◽  
Jansle Vieira Rocha ◽  
Rubens Augusto Camargo Lamparelli

Spectral information is well related with agronomic variables and can be used in crop monitoring and yield forecasting. This paper describes a multitemporal research with the sugarcane variety SP80-1842, studying its spectral behavior using field spectroscopy and its relationship with agronomic parameters such as leaf area index (LAI), number of stalks per meter (NPM), yield (TSS) and total biomass (BMT). A commercial sugarcane field in Araras/SP/Brazil was monitored for two seasons. Radiometric data and agronomic characterization were gathered in 9 field campaigns. Spectral vegetation indices had similar patterns in both seasons and adjusted to agronomic parameters. Band 4 (B4), Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) increased their values until the end of the vegetative stage, around 240 days after harvest (DAC). After that stage, B4 reflectance and NDVI values began to stabilize and decrease because the crop reached ripening and senescence stages. Band 3 (B3) and RVI presented decreased values since the beginning of the cycle, followed by a stabilization stage. Later these values had a slight increase caused by the lower amount of green vegetation. Spectral variables B3, RVI, NDVI, and SAVI were highly correlated (above 0.79) with LAI, TSS, and BMT, and about 0.50 with NPM. The best regression models were verified for RVI, LAI, and NPM, which explained 0.97 of TSS variation and 0.99 of BMT variation.


2020 ◽  
Vol 12 (7) ◽  
pp. 1207 ◽  
Author(s):  
Jian Zhang ◽  
Chufeng Wang ◽  
Chenghai Yang ◽  
Tianjin Xie ◽  
Zhao Jiang ◽  
...  

The spatial resolution of in situ unmanned aerial vehicle (UAV) multispectral images has a crucial effect on crop growth monitoring and image acquisition efficiency. However, existing studies about optimal spatial resolution for crop monitoring are mainly based on resampled images. Therefore, the resampled spatial resolution in these studies might not be applicable to in situ UAV images. In order to obtain optimal spatial resolution of in situ UAV multispectral images for crop growth monitoring, a RedEdge Micasense 3 camera was installed onto a DJI M600 UAV flying at different heights of 22, 29, 44, 88, and 176m to capture images of seedling rapeseed with ground sampling distances (GSD) of 1.35, 1.69, 2.61, 5.73, and 11.61 cm, respectively. Meanwhile, the normalized difference vegetation index (NDVI) measured by a GreenSeeker (GS-NDVI) and leaf area index (LAI) were collected to evaluate the performance of nine vegetation indices (VIs) and VI*plant height (PH) at different GSDs for rapeseed growth monitoring. The results showed that the normalized difference red edge index (NDRE) had a better performance for estimating GS-NDVI (R2 = 0.812) and LAI (R2 = 0.717), compared with other VIs. Moreover, when GSD was less than 2.61 cm, the NDRE*PH derived from in situ UAV images outperformed the NDRE for LAI estimation (R2 = 0.757). At oversized GSD (≥5.73 cm), imprecise PH information and a large heterogeneity within the pixel (revealed by semi-variogram analysis) resulted in a large random error for LAI estimation by NDRE*PH. Furthermore, the image collection and processing time at 1.35 cm GSD was about three times as long as that at 2.61 cm. The result of this study suggested that NDRE*PH from UAV multispectral images with a spatial resolution around 2.61 cm could be a preferential selection for seedling rapeseed growth monitoring, while NDRE alone might have a better performance for low spatial resolution images.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


2008 ◽  
Vol 47 (4) ◽  
pp. 1199-1221 ◽  
Author(s):  
Alexander P. Trishchenko ◽  
Yi Luo ◽  
Konstantin V. Khlopenkov ◽  
Shusen Wang

Abstract Multispectral surface albedo and bidirectional properties are required for accurate determination of the surface and atmosphere solar radiation budget. A method is developed here to obtain time series of these surface characteristics consistent with the Moderate Resolution Imaging Spectroradiometer (MODIS) using historical satellite observations with limited spectral coverage available from NOAA Advanced Very High Resolution Radiometer (AVHRR) and VEGETATION/Satellite pour l’Observation de la Terre (SPOT). A nonlinear regression model was developed that relates retrievals from four spectral channels of VEGETATION/SPOT or three spectral channels of NOAA AVHRR with retrieval from each of the seven MODIS channels designed for land applications. The model also takes into account the surface land cover type, the normalized difference vegetation index, and the seasonal cycle. It was applied to generate surface albedo and bidirectional parameters of the seven MODIS-like spectral channels at a 10-day interval for the 1995–2004 period over the U.S. southern Great Plains. The relative retrieval accuracy for the MODIS channels replicated from AVHRR or VEGETATION/SPOT data was typically better than 5%. Correlation coefficients between replicated and original data varied from 0.92 to 0.98 for all channels except MODIS channel 5, where it was lower (0.77–0.84). The developed method provides valuable information for parameterization of spectral albedo in global climate models and can be extended to generate global multispectral data compatible with MODIS from historical AVHRR and VEGETATION/SPOT observations for the pre-MODIS era.


Author(s):  
Lijuan Wang ◽  
Guimin Zhang ◽  
Hui Lin ◽  
Liang Liang ◽  
Zheng Niu

The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3965 ◽  
Author(s):  
Liang Zhao ◽  
Zhigang Liu ◽  
Shan Xu ◽  
Xue He ◽  
Zhuoya Ni ◽  
...  

The fraction of absorbed photosynthetically active radiation (FPAR) is a key variable in the model of vegetation productivity. Vegetation indices (VIs) that were derived from instantaneous remote-sensing data have been successfully used to estimate the FPAR of a day or a longer period. However, it has not yet been verified whether continuous VIs can be used to accurately estimate the diurnal dynamics of a vegetation canopy FPAR, which may fluctuate dramatically within a day. In this study, we measured the high temporal resolution spectral data (480 to 850 nm) and FPAR data of a maize canopy from the jointing stage to the tasseling stage under different irrigation and illumination conditions using two automatic observation systems. To estimate the FPAR, we developed regression models based on a quadratic function using 13 kinds of VIs. The results show the following: (1) Under nondrought conditions, although the illumination condition (sunny or cloudy) influenced the trend of the canopy diurnal FPAR, it had only a slight effect on the model accuracies of the FPAR-VIs. The maximum coefficients of determination (R2) of the FPAR-VIs models generated for the sunny nondrought data, the cloudy nondrought data, and all of the nondrought data were 0.895, 0.88, and 0.828, respectively. The VIs—including normalized difference vegetation index (NDVI), green NDVI (GNDVI), red-edge simple ratio (SR705), modified simple ratio 2 (mSR2), red-edge normalized difference vegetation index (NDVI705), and enhanced vegetation index (EVI)—that were related to the canopy structure had higher estimation accuracies (R2 > 0.8) than the other VIs that were related to the soil adjustment, chlorophyll, and physiology. The estimation accuracies of the GNDVI and some red-edge VIs (including NDVI705, SR705, and mSR2) were higher than the estimation accuracy of the NDVI. (2) Under drought stress, the FPAR decreased significantly because of leaf wilting and the effective leaf area index decrease around noon. When we included drought data in the model, accuracies were reduced dramatically and the R2 value of the best model was only 0.59. When we built the regression models based only on drought data, the EVI, which can weaken the influence of soil, had the best estimate accuracy (R2 = 0.68).


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 226 ◽  
Author(s):  
Stefano Marino ◽  
Arturo Alvino

An on-farm research study was carried out on two small-plots cultivated with two cultivars of durum wheat (Odisseo and Ariosto). The paper presents a theoretical approach for investigating frequency vegetation indices (VIs) in different areas of the experimental plot for early detection of agronomic spatial variability. Four flights were carried out with an unmanned aerial vehicle (UAV) to calculate high-resolution normalized difference vegetation index (NDVI) and optimized soil-adjusted vegetation index (OSAVI) images. Ground agronomic data (biomass, leaf area index (LAI), spikes, plant height, and yield) have been linked to the vegetation indices (VIs) at different growth stages. Regression coefficients of all samplings data were highly significant for both the cultivars and VIs at anthesis and tillering stage. At harvest, the whole plot (W) data were analyzed and compared with two sub-areas characterized by high agronomic performance (H) yield 20% higher than the whole plot, and low performances (L), about 20% lower of yield related to the whole plot). The whole plot and two sub-areas were analyzed backward in time comparing the VIs frequency curves. At anthesis, more than 75% of the surface of H sub-areas showed a VIs value higher than the L sub-plot. The differences were evident also at the tillering and seedling stages, when the 75% (third percentile) of VIs H data was over the 50% (second percentile) of the W curve and over the 25% (first percentile) of L sub-plot. The use of high-resolution images for analyzing the frequency value of VIs in different areas can be a useful approach for the detection of agronomic constraints for precision agriculture purposes.


2018 ◽  
Vol 30 ◽  
pp. 63-74
Author(s):  
Ilina Kamenova ◽  
Petar Dimitrov ◽  
Rusina Yordanova

The aim of the study is to evaluate the possibility for using RapidEye data for prediction of Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), fraction of vegetation Cover (fCover), leaf Chlorophyll Concentration (CC) and Canopy Chlorophyll Content (CCC) of winter wheat. The relation of a number of vegetation indices (VIs) with these crop variables are accessed based on a regression analysis. Indices, which make use of the red edge band, such as Chlorophyll Index red edge (CIre) and red edge Normalized Difference Vegetation Index (reNDVI), were found most useful, resulting in linear models with R2 of 0.67, 0.71, 0.72, and 0.76 for fCover, LAI, CCC, and fAPAR respectively. CC was not related with any of the VIs.


Sign in / Sign up

Export Citation Format

Share Document