scholarly journals Fine structural tuning of the assembly of ECM peptide conjugates via slight sequence modifications

2020 ◽  
Vol 6 (41) ◽  
pp. eabd3033
Author(s):  
Jingya Qin ◽  
Jennifer D. Sloppy ◽  
Kristi L. Kiick

The self-assembly of nanostructures from conjugates of elastin-like peptides and collagen-like peptides (ELP-CLP) has been studied as means to produce thermoresponsive, collagen-binding drug delivery vehicles. Motivated by our previous work in which ELP-CLP conjugates successfully self-assembled into vesicles and platelet-like nanostructures, here, we extend our library of ELP-CLP bioconjugates to a series of tryptophan/phenylalanine-containing ELPs and GPO-based CLPs [W2Fx-b-(GPO)y] with various domain lengths to determine the impact of these modifications on the thermoresponsiveness and morphology. The lower transition temperature of the conjugates with longer ELP or CLP domains enables the formation of well-defined nanoparticles near physiological temperature. Moreover, the morphological transition from vesicles to platelet-like nanostructures occurred when the ratio of the lengths of ELP/CLP decreased. Given the previously demonstrated ability of many ELP-CLP bioconjugates to bind to both hydrophobic drugs and collagen-containing materials, our results suggest new opportunities for designing specific thermoresponsive nanostructures for targeted biological applications.

2016 ◽  
Vol 4 (48) ◽  
pp. 8025-8032 ◽  
Author(s):  
D. Sirisha Janni ◽  
U. Chandrasekhar Reddy ◽  
Soumya Saroj ◽  
K. M. Muraleedharan

The self-assembly of non-ionic amphiphiles with hydroxylated oxanorbornane head-group was controlled using amino acid units as spacers between hydrophilic and lipophilic domains to get spherical supramolecular aggregates suitable for drug delivery applications.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5952
Author(s):  
Bwalya A. Witika ◽  
Pedzisai A. Makoni ◽  
Larry L. Mweetwa ◽  
Pascal V. Ntemi ◽  
Melissa T. R. Chikukwa ◽  
...  

The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a “Trojan horse” for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.


2013 ◽  
Vol 5 (3) ◽  
Author(s):  
Magesh Sadasivam ◽  
Pinar Avci ◽  
Gaurav K. Gupta ◽  
Shanmugamurthy Lakshmanan ◽  
Rakkiyappan Chandran ◽  
...  

AbstractPhotodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT.


2016 ◽  
Vol 128 (34) ◽  
pp. 10256-10261 ◽  
Author(s):  
David Presa-Soto ◽  
Gabino A. Carriedo ◽  
Raquel de la Campa ◽  
Alejandro Presa Soto

2020 ◽  
Vol 98 (7) ◽  
pp. 379-385
Author(s):  
Carson O. Zellman ◽  
Danielle Vu ◽  
Vance E. Williams

Although the impact of individual functional groups on the self-assembly of columnar liquid crystal phases has been widely studied, the effect of varying multiple substituents has received much less attention. Herein, we report a series of dibenzo[a,c]phenazines containing an alcohol or ether adjacent to an electron-withdrawing ester or acid. With one exception, these difunctional mesogens form columnar phases. The phase behavior appeared to be dominated by the electron-withdrawing substituent; transition temperatures were similar to derivatives with these groups in isolation. In most instances, the addition of an electron-donating group ortho to an ester or acid suppressed the melting temperature and elevated the clearing temperature, leading to broader liquid crystal thermal ranges. This effect was more pronounced for derivatives functionalized with longer chain hexyloxy groups. These results suggest a potential strategy for controlling the phase ranges of columnar liquid crystals and achieving room temperature mesophases.


2020 ◽  
Vol 49 (39) ◽  
pp. 13685-13692
Author(s):  
Sinan Bayindir ◽  
Kwang Soo Lee ◽  
Nurullah Saracoglu ◽  
Jon R. Parquette

In this work, we report the impact of pH and metal coordination on the self-assembly of amphiphiles comprised of naphthalenediimide (NDI)–bis(indolyl)methane (BIM) chromophores with a charged l-lysine head group.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2872
Author(s):  
Alberto Concellón ◽  
María San Anselmo ◽  
Silvia Hernández-Ainsa ◽  
Pilar Romero ◽  
Mercedes Marcos ◽  
...  

The design of efficient drug-delivery vehicles remains a big challenge in materials science. Herein, we describe a novel class of amphiphilic hybrid dendrimers that consist of a poly(amidoamine) (PAMAM) dendritic core functionalized with bisMPA dendrons bearing cholesterol and coumarin moieties. Their self-assembly behavior both in bulk and in water was investigated. All dendrimers exhibited smectic A or hexagonal columnar liquid crystal organizations, depending on the generation of the dendrimer. In water, these dendrimers self-assembled to form stable spherical micelles that could encapsulate Nile Red, a hydrophobic model compound. The cell viability in vitro of the micelles was studied in HeLa cell line, and proved to be non-toxic up to 72 h of incubation. Therefore, these spherical micelles allow the encapsulation of hydrophobic molecules, and at the same time provided fluorescent traceability due to the presence of coumarin units in their chemical structure, demonstrating the potential of these dendrimers as nanocarriers for drug-delivery applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 596
Author(s):  
Nguyen Truong Co ◽  
Mai Suan Li

The self-assembly of amyloidogenic peptides and proteins into fibrillar structures has been intensively studied for several decades, because it seems to be associated with a number of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Therefore, understanding the molecular mechanisms of this phenomenon is important for identifying an effective therapy for the corresponding diseases. Protein aggregation in living organisms very often takes place on surfaces like membranes and the impact of a surface on this process depends not only on the surface chemistry but also on its topology. Our goal was to develop a simple lattice model for studying the role of surface roughness in the aggregation kinetics of polypeptide chains and the morphology of aggregates. We showed that, consistent with the experiment, an increase in roughness slows down the fibril formation, and this process becomes inhibited at a very highly level of roughness. We predicted a subtle catalytic effect that a slightly rough surface promotes the self-assembly of polypeptide chains but does not delay it. This effect occurs when the interaction between the surface and polypeptide chains is moderate and can be explained by taking into account the competition between energy and entropy factors.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Darnel J. Allen ◽  
Wayne E. Archibald ◽  
John A. Harper ◽  
John C. Saputo ◽  
Daniel Torres

We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au) clusters in a well-packed CH3S self-assembled lattice. We compute CH3S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH3S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effect to the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH3S-Au-SCH3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH3S-Au interface.


Sign in / Sign up

Export Citation Format

Share Document