scholarly journals Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition

2021 ◽  
Vol 7 (14) ◽  
pp. eabf2690
Author(s):  
J. Duan ◽  
G. Álvarez-Pérez ◽  
K. V. Voronin ◽  
I. Prieto ◽  
J. Taboada-Gutiérrez ◽  
...  

Polaritons with directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals promise unprecedented manipulation of light at the nanoscale. However, these polaritons present a crucial limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, imposing forbidden directions of propagation. Here, we demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW crystal (α-phase molybdenum trioxide) can be directed along forbidden directions by inducing an optical topological transition, which emerges when the slab is placed on a substrate with a given negative permittivity (4H–silicon carbide). By visualizing the transition in real space, we observe exotic polaritonic states between mutually orthogonal hyperbolic regimes, which unveil the topological origin of the transition: a gap opening in the dispersion. This work provides insights into optical topological transitions in vdW crystals, which introduce a route to direct light at the nanoscale.

2021 ◽  
Author(s):  
Qizhi Yan ◽  
Runkun Chen ◽  
Zhu Yuan ◽  
Peining Li ◽  
Xinliang Zhang

Abstract We theoretically propose and study in-plane anisotropic acoustic phonon polaritons (APhPs) based on a layered structure consisting of a monolayer (or few layers) α-phase molybdenum trioxide (α-MoO3) sandwiched between two metal layers. We find that the APhPs in the proposed sandwiched structures are a canalization (highly directional) electromagnetic mode propagating along with the layers and at the same time exhibit extreme electromagnetic-field confinement surpassing any other type of phonon-polariton modes. When a double layer of α-MoO3 is sandwiched by two Au layers, twisting the two α-MoO3 layers can adjust the interlayer polaritonic coupling and thus manipulate the in-plane propagation of the highly confined APhPs. Our results illustrate that the metal-MoO3-metal sandwiched structures are a promising platform for light guiding and manipulation at ultimate scale.


2014 ◽  
Vol 16 (1) ◽  
pp. 49-52
Author(s):  
Yelfira Sari ◽  
Muhamad Nasir ◽  
Chandra Risdian ◽  
Syukri Syukri

Sintesis nanofiber komposit Zn-PVDF kopolimer dengan metoda elektrospinning telah berhasil dilakukan. Proses pembuatan nanofiber komposit serta  morfologi yang terbentuk dipengaruhi oleh penambahan Zn-asetat dengan perubahan diameter rata-rata serat dari 357,13 nm menjadi 777,24 nm. Analisis FTIR menunjukkan bahwa struktur kristal nanofiber komposit Zn-PVDF kopolimer didominasi oleh strukturβ-phase, dengan bilangan gelombang 1190,08 cm-1 dan 487,99 cm-1 untuk struktur α-phase dan 1404,18 cm-1; 1280,73 cm-1; 1074,35 cm-1; 881,47 cm-1; dan 840,96 cm-1 untuk struktur β-phase.Kata kunci :nanofiber komposit, Zn-PVDF kopolimer komposit, elektrospinning,kristal struktur, morfologi, diameter fiber The fabrication of Zn-PVDF copolymer nanofiber composite has been investigated in this research study by using electrospinning method. Fabrication and morphology of nanofiber composite is influenced by the addition of Zn-acetate. The average diameter of nanofiber composites increase with an addition of Zn-acetate, from 357,13 to 777,24nm. FTIRanalysisshowedthat thecrystalstructure ofPVDFnanofiberis dominatedby β-phase , thewave number 1190,08 cm-1 and 487,99 cm-1 for α-phase structure and 1404,18cm-1; 1280,73cm-1; 1074,35cm-1; 881,47cm-1and840,96cm-1 for β-phase structure respectively.Key words : nanofiber composite, Zn-PVDF copolymer composite, electrospinning, crystal structure,  morphology, fiber diameter


2008 ◽  
Vol 41 (6) ◽  
pp. 1182-1186 ◽  
Author(s):  
Ivan Orlov ◽  
Lukas Palatinus ◽  
Gervais Chapuis

The symmetry of a commensurately modulated crystal structure can be described in two different ways: in terms of a conventional three-dimensional space group or using the superspace concept in (3 +d) dimensions. The three-dimensional space group is obtained as a real-space section of the (3 +d) superspace group. A complete network was constructed linking (3 + 1) superspace groups and the corresponding three-dimensional space groups derived from rational sections. A database has been established and is available at http://superspace.epfl.ch/finder/. It is particularly useful for finding common superspace groups for various series of modular (`composition-flexible') structures and phase transitions. The use of the database is illustrated with examples from various fields of crystal chemistry.


2020 ◽  
Vol 25 (6) ◽  
pp. 847-861
Author(s):  
Lili Cao ◽  
Octav Caldararu ◽  
Ulf Ryde

Abstract Recently, a crystal structure of V-nitrogenase was presented, showing that one of the µ2 sulphide ions in the active site (S2B) is replaced by a lighter atom, suggested to be NH or NH2, i.e. representing a reaction intermediate. Moreover, a sulphur atom is found 7 Å from the S2B site, suggested to represent a storage site for this ion when it is displaced. We have re-evaluated this structure with quantum refinement, i.e. standard crystallographic refinement in which the empirical restraints (employed to ensure that the final structure makes chemical sense) are replaced by more accurate quantum–mechanical calculations. This allows us to test various interpretations of the structure, employing quantum–mechanical calculations to predict the ideal structure and to use crystallographic measures like the real-space Z-score and electron-density difference maps to decide which structure fits the crystallographic raw data best. We show that the structure contains an OH−-bound state, rather than an N2-derived reaction intermediate. Moreover, the structure shows dual conformations in the active site with ~ 14% undissociated S2B ligand, but the storage site seems to be fully occupied, weakening the suggestion that it represents a storage site for the dissociated ligand. Graphic abstract


1999 ◽  
Vol 14 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Sachiko Okuzaki ◽  
Yuji Iwamoto ◽  
Shinji Kondoh ◽  
Koichi Kikuta ◽  
Shin-ichi Hirano

Chemically modified polycarbosilane (PC) which contains Si–Al–C–O component, PCOAl, was synthesized using PC and aluminum triisopropoxide. Ceramic yield was greatly improved through the modification of PC with a metal alkoxide. The phase transformation behavior and microstructure development of silicon carbide (SiC) were studied on β–SiC powders coated with chemically modified PC. The β-α phase transformation of SiC was enhanced by the coating of chemically modified PC on β–SiC powder. A unique microstructure with submicron-sized plate-like grains was developed, since the fine a phase produced at low temperature served as a nucleation site for the β-α phase transformation of SiC.


2007 ◽  
Vol 46 (11) ◽  
pp. 4446-4457 ◽  
Author(s):  
Eugenio Coronado ◽  
Simona Curreli ◽  
Carlos Giménez-Saiz ◽  
Carlos J. Gómez-García ◽  
Paola Deplano ◽  
...  

2011 ◽  
Vol 67 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Sonja M. Hammer ◽  
Edith Alig ◽  
Lothar Fink ◽  
Martin U. Schmidt

Possible crystal structures of ethyl-tert-butyl ether (ETBE) were predicted by global lattice-energy minimizations using the force-field approach. 33 structures were found within an energy range of 2 kJ mol−1 above the global minimum. Low-temperature crystallization experiments were carried out at 80–160 K. The crystal structure was determined from X-ray powder data. ETBE crystallizes in C2/m, Z = 4, with molecules on mirror planes. The ETBE molecule adopts a trans conformation with a (CH3)3C—O—C—C torsion angle of 180°. The experimental structure corresponds with high accuracy to the predicted structure with energy rank 2, which has an energy of 0.54 kJ mol−1 above the global minimum and is the most dense low-energy structure. In some crystallization experiments a second polymorph was observed, but the quality of the powder data did not allow the determination of the crystal structure. Possibilities and limitations are discussed for solving crystal structures from powder diffraction data by real-space methods and lattice-energy minimizations.


2010 ◽  
Vol 114 (16) ◽  
pp. 7489-7491 ◽  
Author(s):  
Burton Neuner ◽  
Dmitriy Korobkin ◽  
Chris Fietz ◽  
Davy Carole ◽  
Gabriel Ferro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document