scholarly journals Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery

2021 ◽  
Vol 7 (25) ◽  
pp. eabg1218
Author(s):  
Mike Burton ◽  
Catherine Hayer ◽  
Craig Miller ◽  
Bruce Christenson

Small, phreatic explosions from volcanic hydrothermal systems pose a substantial proximal hazard on volcanoes, which can be popular tourist sites, creating casualty risks in case of eruption. Volcano monitoring of gas emissions provides insights into when explosions are likely to happen and unravel processes driving eruptions. Here, we report SO2 flux and plume height data retrieved from TROPOMI satellite imagery before, during, and after the 9 December 2019 eruption of Whakaari/White Island volcano, New Zealand, which resulted in 22 fatalities and numerous injuries. We show that SO2 was detected without explosive activity on separate days before and after the explosion, and that fluxes increased from 10 to 45 kg/s ~40 min before the explosion itself. High temporal resolution gas monitoring from space can provide key insights into magmatic degassing processes globally, aiding understanding of eruption precursors and complementing ground-based monitoring.

2014 ◽  
Vol 41 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. J. Gill

In December 1884 Charles Francis Adams (1857–1893) left Illinois, USA, by train for San Francisco and crossed the Pacific by ship to work as taxidermist at Auckland Museum, New Zealand, until February 1887. He then went to Borneo via several New Zealand ports, Melbourne and Batavia (Jakarta). This paper concerns a diary by Adams that gives a daily account of his trip to Auckland and the first six months of his employment (from January to July 1885). In this period Adams set up a workshop and diligently prepared specimens (at least 124 birds, fish, reptiles and marine invertebrates). The diary continues with three reports of trips Adams made from Auckland to Cuvier Island (November 1886), Karewa Island (December 1886) and White Island (date not stated), which are important early descriptive accounts of these small offshore islands. Events after leaving Auckland are covered discontinuously and the diary ends with part of the ship's passage through the Dutch East Indies (Indonesia), apparently in April 1887. Adams's diary is important in giving a detailed account of a taxidermist's working life, and in helping to document the early years of Auckland Museum's occupation of the Princes Street building.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 856.1-856
Author(s):  
C. Lao ◽  
D. Lees ◽  
D. White ◽  
R. Lawrenson

Background:Osteoarthritis of the hip and knee is one of the most common causes of reduced mobility. It also causes stiffness and pain. Opioids can offer pain relief but is usually used for severe acute pain caused by major trauma or surgery. The use of opioids for relief of chronic pain caused by arthritis has increased over the last few decades.[1]Objectives:This study aims to investigate the use of strong opiates for patients with hip and knee osteoarthritis before and after joint replacement surgery, over a 13 years period in New Zealand.Methods:This study included patients with osteoarthritis who underwent publicly funded primary hip and knee replacement surgeries in 2005-2017 in New Zealand. These records were identified from the National Minimum Dataset (NMD). They were cross referenced with the NZJR data to exclude the admissions not for primary hip or knee replacement surgeries. Patients without a diagnosis of osteoarthritis were excluded.The PHARMS dataset was linked to the NMD to identify the use of strong opiates before and after surgeries. The strong opiates available for community dispensing in New Zealand and included in this study are: dihydrocodeine, fentanyl, methadone, morphine, oxycodone and pethidine. Use of opiate within three months prior to surgery and within 12 months post-surgery were examined by gender, age group, ethnicity, Charlson Comorbidity Index score and year of surgery. Differences by subgroup was examined with Chi- square test. Logistic regression model was used to calculate the adjusted odds ratios of strong opiate use before and after surgery compared with no opiate use.Results:We identified 53,439 primary hip replacements and 50,072 primary knee replacements with a diagnosis of osteoarthritis. Of patients with hip osteoarthritis, 6,251 (11.7%) had strong opiate before hip replacement surgeries and 11,939 (22.3%) had opiate after surgeries. Of patients with knee osteoarthritis, 2,922 (5.8%) had strong opiate before knee replacement surgeries and 15,252 (30.5%) had opiate after surgeries.The probability of patients with hip and knee osteoarthritis having opiate decreased with age, increased with Charlson comorbidity index score, and increased over time both before and after surgeries. Male patients with hip and knee osteoarthritis were less likely to have opiate than female patients both before and after surgeries. New Zealand Europeans with hip and knee osteoarthritis were more likely to receive opiate than other ethnic groups prior to surgeries, but were less likely to have opiate than Asians post-surgeries.Patients who had opiate before surgeries were more likely to have opiate after surgeries than those who did not have opiate before surgeries. The odds ratio was 8.34 (95% confidence interval (CI): 7.87-8.84) for hip osteoarthritis and 11.94 (95% CI: 10.84-13.16) for knee osteoarthritis after adjustment for age, gender, ethnicity, year of surgery and Charlson comorbidity index score. Having opiate prior to surgeries also increased the probability of having opiate for 6 weeks or more after surgeries substantially. The adjusted odds ratio was 21.46 (95% CI: 19.74-23.31) for hip osteoarthritis and 27.22 (95% CI: 24.95-29.68) for knee osteoarthritis.Conclusion:Preoperative opiate holidays should be encouraged. Multiple strategies need to be used to develop analgesic plans that allow adequate rehabilitation, without precipitating a chronic opiate dependence. Clinicians would also benefit from clear guidelines for prescribing strong opiates.References:[1] Nguyen, L.C., D.C. Sing, and K.J. Bozic,Preoperative Reduction of Opioid Use Before Total Joint Arthroplasty.J Arthroplasty, 2016.31(9 Suppl): p. 282-7.Disclosure of Interests:None declared


2005 ◽  
Vol 81 (2) ◽  
pp. 146-178 ◽  
Author(s):  
Vicki Moon ◽  
Jennifer Bradshaw ◽  
Richard Smith ◽  
Willem de Lange
Keyword(s):  

1886 ◽  
Vol 3 (9) ◽  
pp. 398-402

The “Lake District” of the North Island is too well known to all students of volcanic phenomena, especially of that branch comprising hydrothermal action, to need a detailed description. It will be sufficient to say that it forms a belt, crossing the island from north-east to south-west, and forms a portion of the Middle and Upper Waikato Basins of Hochstetter. The district has been recently brought into prominent notice by the disastrous eruption of Mount Tarawera, very full accounts of which have appeared in New Zealand papers lately received. The eruption commenced in the early morning of Thursday, June 10th, but premonitory symptoms showed themselves a few days before in a tidal wave, three feet high, on Lake Tarawera, great uneasiness of the springs at Ohinemutu, and the reported appearance of smoke issuing from Euapehu, the highest of the great trachytic cones at the extreme south-westerly end of the system. The belt of activity extends from Mount Tongariro at the one end to White Island, in the Bay of Plenty, at the other, a distance of about 150 miles. White Island has undergone considerable change from volcanic action during recent years, and Tongariro was last in eruption in July, 1871; whilst its snowclad sister cone Euapehu has never manifested volcanic action within the historic period until now. This wide zone in the centre of the North Island has, ever since the arrival of the Maoris, been the scene of such extraordinary phenomena, that it has of late been the resort of visitors from all quarters of the globe.


2017 ◽  
Author(s):  
Federica Pardini ◽  
Mike Burton ◽  
Fabio Arzilli ◽  
Giuseppe La Spina ◽  
Margherita Polacci

Abstract. Quantifying time-series of sulphur dioxide (SO2) emissions during explosive eruptions provides insight into volcanic processes, assists in volcanic hazard mitigation, and permits quantification of the climatic impact of major eruptions. While volcanic SO2 is routinely detected from space during eruptions, the retrieval of plume injection height and SO2 flux time-series remains challenging. Here we present a new numerical method based on forward- and backward-trajectory analyses which enable such time-series to be robustly determined. The method is applied to satellite images of volcanic eruption clouds through the integration of the HYSPLIT software with custom-designed Python routines in a fully automated manner. Plume injection height and SO2 flux time-series are computed with a period of ~ 10 minutes with low computational cost. Using this technique, we investigated the SO2 emissions from two sub-Plinian eruptions of Calbuco, Chile, produced in April 2015. We found a mean injection height above the vent of ~ 15 km for the two eruptions, with overshooting tops reaching ~ 20 km. We calculated a total of 300 ± 46 kt of SO2 released almost equally during both events, with 160 ± 30 kt produced by the first event and 140 ± 35 kt by the second. The retrieved SO2 flux time-series show an intense gas release during the first eruption (average flux of 2560 kt day−1), while a lower SO2 flux profile was seen for the second (average flux 560 kt day−1), suggesting that the first eruption was richer in SO2. This result is exemplified by plotting SO2 flux against retrieved plume height above the vent, revealing distinct trends for the two events. We propose that a pre-erupted exsolved volatile phase was present prior to the first event, which could have led to the necessary overpressure to trigger the eruption. The second eruption, instead, was mainly driven by syneruptive degassing. This hypothesis is supported by melt inclusion measurements of sulfur concentrations in plagioclase phenocrysts and groundmass glass of tephra samples through electron microprobe analysis. This work demonstrates that detailed interpretations of sub-surface magmatic processes during eruptions are possible using satellite SO2 data. Quantitative comparisons of high temporal resolution plume height and SO2 flux time-series offer a powerful tool to examine processes triggering and controlling eruptions. These novel tools open a new frontier in space-based volcanological research, and will be of great value when applied to remote, poorly monitored volcanoes, and to major eruptions that can have regional and global climate implications through, for example, influencing ozone depletion in the stratosphere and light scattering from stratospheric aerosols.


2013 ◽  
Vol 70 (8) ◽  
pp. 2566-2573 ◽  
Author(s):  
Xun Jiang ◽  
Jingqian Wang ◽  
Edward T. Olsen ◽  
Thomas Pagano ◽  
Luke L. Chen ◽  
...  

Abstract Midtropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) were used to explore the influence of stratospheric sudden warming (SSW) on CO2 in the middle to upper troposphere. To choose the SSW events that had strong coupling between the stratosphere and troposphere, the authors applied a principal component analysis to the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) geopotential height data at 17 pressure levels. Two events (April 2003 and March 2005) that have strong couplings between the stratosphere and troposphere were chosen to investigate the influence of SSW on AIRS midtropospheric CO2. The authors investigated the temporal and spatial variations of AIRS midtropospheric CO2 before and after the SSW events and found that the midtropospheric CO2 concentrations increased by 2–3 ppm within a few days after the SSW events. These results can be used to better understand how the chemical tracers respond to the large-scale dynamics in the high latitudes.


2017 ◽  
Author(s):  
Andreas Kääb ◽  
Bas Altena ◽  
Joseph Mascaro

Abstract. Satellite measurements of coseismic displacements are typically based on Synthetic Aperture Radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very-high resolution satellites, or airphotos. Here, we evaluate a new class of optical satellite images for this purpose – data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2–4 m resolution visible and near-infrared frame images of approximately 20–30 km × 9–15 km in size, acquired in continuous sequence along an orbit of approximately 375–475 km height. From single scenes or mosaics from before and after the earthquake we observe surface displacements of up to almost 10 m and estimate a matching accuracy from PlanetScope data of up to ±0.2 pixels (~ ±0.6 m). This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat8 and Sentinel-2 data.


2021 ◽  
Author(s):  
◽  
Roald Egbert Harro Bomans

<p>Introduced mammalian predators, namely possums, stoats and rats, are the leading cause of decline in native avifauna in New Zealand. The control of these species is essential to the persistence of native birds. A major component of mammal control in New Zealand is carried out through the aerial distribution of the toxin sodium monofluoroacetate (otherwise known as 1080). The use of this toxin, however, is subject to significant public debate. Many opponents of its use claim that forests will ‘fall silent’ following aerial operations, and that this is evidence of negative impacts on native bird communities. With the continued and likely increased use of this poison, monitoring the outcomes of such pest control operations is necessary to both address these concerns and inform conservation practice. The recent growth in autonomous recording units (ARUs) provides novel opportunities to conduct monitoring using bioacoustics. This thesis used bioacoustic techniques to monitor native bird species over three independent aerial 1080 operations in the Aorangi and Rimutaka Ranges of New Zealand.  In Chapter 2, diurnal bird species were monitored for 10-12 weeks over two independent operations in treatment and non-treatment areas. At the community level, relative to non-treatment areas, the amount of birdsong recorded did not decrease significantly in treatment areas across either of the operations monitored. At the species level, one species, the introduced chaffinch (Fringilla coelebs), showed a significant decline in the prevalence of its calls in the treatment areas relative to non-treatment areas. This was observed over one of the two operations monitored. Collectively, these results suggest that diurnal native avifaunal communities do not ‘fall silent’ following aerial 1080 operations.  The quantity of data produced by ARUs can demand labour-intensive manual analysis. Extracting data from recordings using automated detectors is a potential solution to this issue. The creation of such detectors, however, can be subjective, iterative, and time-consuming. In Chapter 3, a process for developing a parsimonious, template-based detector in an efficient, objective manner was developed. Applied to the creation of a detector for morepork (Ninox novaeseelandiae) calls, the method was highly successful as a directed means to achieve parsimony. An initial pool of 187 potential templates was reduced to 42 candidate templates. These were further refined to a 10-template detector capable of making 98.89% of the detections possible with all 42 templates in approximately a quarter of the processing time for the dataset tested. The detector developed had a high precision (0.939) and moderate sensitivity (0.399) with novel recordings, developed for the minimisation of false-positive errors in unsupervised monitoring of broad-scale population trends.  In Chapter 4, this detector was applied to the short-term 10-12 week monitoring of morepork in treatment and non-treatment areas around three independent aerial 1080 operations; and to longer-term four year monitoring in two study areas, one receiving no 1080 treatment, and one receiving two 1080 treatments throughout monitoring. Morepork showed no significant difference in trends of calling prevalence across the three independent operations monitored. Longer-term, a significant quadratic effect of time since 1080 treatment was found, with calling prevalences predicted to increase for 3.5 years following treatment. Collectively, these results suggest a positive effect of aerial 1080 treatment on morepork populations in the lower North Island, and build on the small amount of existing literature regarding the short- and long-term response of this species to aerial 1080 operations.</p>


Sign in / Sign up

Export Citation Format

Share Document