scholarly journals Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis

2021 ◽  
Vol 7 (35) ◽  
Author(s):  
Luis Hernandez-Nunez ◽  
Alicia Chen ◽  
Gonzalo Budelli ◽  
Matthew E. Berck ◽  
Vincent Richter ◽  
...  
Keyword(s):  
2001 ◽  
Vol 69 (3) ◽  
pp. 1957-1960 ◽  
Author(s):  
Michael Otto ◽  
Hartmut Echner ◽  
Wolfgang Voelter ◽  
Friedrich Götz

ABSTRACT Cross-inhibition by quorum-sensing pheromones betweenStaphylococcus aureus and Staphylococcus epidermidis was investigated using all known S. aureus agr pheromone subgroups. All S. aureus subgroups were sensitive towards the S. epidermidis pheromone, with the exception of the recently identified subgroup 4. The subgroup 4 pheromone was also the only S. aureus pheromone able to inhibit the S. epidermidis agr response. The close relation of subgroup 4 to subgroup 1 suggests that subgroup 4 might have evolved from subgroup 1 by mutation under the selective pressure of competition with S. epidermidis. The competition between S. aureus and S. epidermidis by means of quorum-sensing cross talk seems to be generally in favor of S. epidermidis, which might explain the predominance of S. epidermidis on the skin and in infections on indwelling medical devices.


2004 ◽  
Vol 45 (7) ◽  
pp. 1256-1265 ◽  
Author(s):  
Thomas J. F. Nieland ◽  
Angeliki Chroni ◽  
Michael L. Fitzgerald ◽  
Zoltan Maliga ◽  
Vassilis I. Zannis ◽  
...  

2007 ◽  
Vol 59 (1) ◽  
pp. 13-22 ◽  
Author(s):  
M. Kojic ◽  
Jelena Lozo ◽  
Jelena Begovic ◽  
B. Jovcic ◽  
Lj. Topisirovic

Five bacteriocin-producing lactococci isolates from traditionally prepared kefir were determined as Lactococcus lactis subsp. lactis. The analyzed isolates showed different plasmid profiles and no cross inhibition between them was detected. Moreover, natural isolate BGKF26 was resistant to the antimicrobial activity of nisin producing strain NP45. Plasmid curing experiments revealed that the genes encoding bacteriocin and proteinase production are located on separate genetic elements, except in BGKF26. Production of the tested bacteriocins depends on the concentration of casitone or triptone in the medium. Higher concentrations of casitone or triptone induce bacteriocin activity. Our DNA-DNA hybridization analyses suggest that the analyzed antimicrobial compounds probably are lactococcin-like bacteriocins.


2012 ◽  
Vol 108 (10) ◽  
pp. 2679-2688 ◽  
Author(s):  
Zhiyin Liang ◽  
Michael A. Freed

The retina is divided into parallel and mostly independent ON and OFF pathways, but the ON pathway “cross” inhibits the OFF pathway. Cross inhibition was thought to improve signal processing by the OFF pathway, but its effect on contrast encoding had not been tested experimentally. To quantify the effect of cross inhibition on the encoding of contrast, we presented a dark flash to an in vitro preparation of the mammalian retina. We then recorded excitatory currents, inhibitory currents, membrane voltages, and spikes from OFF α-ganglion cells. The recordings were subjected to an ideal observer analysis that used Bayesian methods to determine how accurately the recordings detected the dark flash. We found that cross inhibition increases the detection accuracy of currents and membrane voltages. Yet these improvements in encoding do not fully reach the spike train, because cross inhibition also hyperpolarizes the OFF α-cell below spike threshold, preventing small signals in the membrane voltages at low contrast from reaching the spike train. The ultimate effect of cross inhibition is to increase the accuracy with which the spike train detects moderate contrast, but reduce the accuracy with which it detects low contrast. In apparent compensation for the loss of accuracy at low contrast, cross inhibition, by hyperpolarizing the OFF α-cell, reduces the number of spikes required to detect the dark flash and thereby increases encoding efficiency.


2020 ◽  
Vol 21 (14) ◽  
pp. 5146
Author(s):  
Chenjie Fei ◽  
Myron A. Zwozdesky ◽  
James L. Stafford

Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins shown to regulate several innate immune cell effector responses, including phagocytosis. The precise mechanisms of IpLITR-mediated regulation of the phagocytic process are not entirely understood, but we have previously shown that different IpLITR-types use classical as well as novel pathways for controlling immune cell-mediated target engulfment. To date, all functional assessments of IpLITR-mediated regulatory actions have focused on the independent characterization of select IpLITR-types in transfected cells. As members of the immunoglobulin superfamily, many IpLITRs share similar extracellular Ig-like domains, thus it is possible that various IpLITR actions are influenced by cross-talk mechanisms between different IpLITR-types; analogous to the paired innate receptor paradigm in mammals. Here, we describe in detail the co-expression of different IpLITR-types in the human embryonic AD293 cell line and examination of their receptor cross-talk mechanisms during the regulation of the phagocytic response using imaging flow cytometry, confocal microscopy, and immunoprecipitation protocols. Overall, our data provides interesting new insights into the integrated control of phagocytosis via the antagonistic networking of independent IpLITR-types that requires the selective recruitment of inhibitory signaling molecules for the initiation and sustained cross-inhibition of phagocytosis.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1443-1447 ◽  
Author(s):  
C.G. Begley ◽  
N.A. Nicola

Sign in / Sign up

Export Citation Format

Share Document