Interaction of the Response Regulator ARR4 with Phytochrome B in Modulating Red Light Signaling

Science ◽  
2001 ◽  
Vol 294 (5544) ◽  
pp. 1108-1111 ◽  
Author(s):  
U. Sweere
2015 ◽  
Vol 112 (35) ◽  
pp. 11108-11113 ◽  
Author(s):  
Ari Sadanandom ◽  
Éva Ádám ◽  
Beatriz Orosa ◽  
András Viczián ◽  
Cornelia Klose ◽  
...  

The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
He Huang ◽  
Chan Yul Yoo ◽  
Rebecca Bindbeutel ◽  
Jessica Goldsworthy ◽  
Allison Tielking ◽  
...  

Plants react to seasonal change in day length through altering physiology and development. Factors that function to harmonize growth with photoperiod are poorly understood. Here we characterize a new protein that associates with both circadian clock and photoreceptor components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have overly elongated hypocotyls specifically under short days while constitutive expression of PCH1 shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB) in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool after light exposure, potentiating red-light signaling and prolonging memory of prior illumination. Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive growth by integrating the clock with light perception pathways through modulating daily phyB-signaling.


2013 ◽  
Vol 150 (2) ◽  
pp. 308-320 ◽  
Author(s):  
Hyunmo Choi ◽  
Suyeong Jeong ◽  
Dong Su Kim ◽  
Hyung Jin Na ◽  
Jong Sang Ryu ◽  
...  

2019 ◽  
Vol 116 (51) ◽  
pp. 26049-26056 ◽  
Author(s):  
Yueqin Heng ◽  
Yan Jiang ◽  
Xianhai Zhao ◽  
Hua Zhou ◽  
Xuncheng Wang ◽  
...  

Phytochrome B (phyB) absorbs red light signals and subsequently initiates a set of molecular events in plant cells to promote photomorphogenesis. Here we show that phyB directly interacts with B-BOX CONTAINING PROTEIN 4 (BBX4), a positive regulator of red light signaling, and positively controls its abundance in red light. BBX4 associates with PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and represses PIF3 transcriptional activation activity and PIF3-controlled gene expression. The degradation of BBX4 in darkness is dependent on CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and the 26S proteasome system. Collectively, BBX4 acts as a key component of the phyB-PIF3–mediated signaling module and fine tunes the red light action. phyB promotes the accumulation of BBX4, which in turn serves to repress PIF3 action through direct physical interaction to promote photomorphogenic development in red light.


2008 ◽  
Vol 190 (21) ◽  
pp. 7241-7250 ◽  
Author(s):  
Lina Li ◽  
David M. Kehoe

ABSTRACT RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.


2013 ◽  
Vol 25 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Xu Zheng ◽  
Suowei Wu ◽  
Huqu Zhai ◽  
Peng Zhou ◽  
Meifang Song ◽  
...  

2005 ◽  
Vol 18 (1) ◽  
pp. 70-84 ◽  
Author(s):  
Sourav Datta ◽  
G.H.C.M. Hettiarachchi ◽  
Xing-Wang Deng ◽  
Magnus Holm

2020 ◽  
Vol 61 (5) ◽  
pp. 933-941
Author(s):  
Xiaoying Liu ◽  
Chunmei Xue ◽  
Le Kong ◽  
Ruining Li ◽  
Zhigang Xu ◽  
...  

Abstract We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.


Sign in / Sign up

Export Citation Format

Share Document