scholarly journals Synthetic Biology: Integrated Gene Circuits

Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1244-1248 ◽  
Author(s):  
Nagarajan Nandagopal ◽  
Michael B. Elowitz

A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits “from scratch” that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches are providing fundamental insights into the regulatory architecture, dynamics, and evolution of genetic circuits and enabling new levels of control across diverse biological systems.

2016 ◽  
Vol 8 (4) ◽  
pp. 394-408 ◽  
Author(s):  
Le-Zhi Wang ◽  
Fuqing Wu ◽  
Kevin Flores ◽  
Ying-Cheng Lai ◽  
Xiao Wang

In this review we discuss how synthetic biology facilitates the task of investigating genetic circuits that are observed in naturally occurring biological systems.


2020 ◽  
Author(s):  
John P. Marken ◽  
Fangzhou Xiao ◽  
Richard M. Murray

AbstractMuch of the progress in developing our ability to successfully design genetic circuits with predictable dynamics has followed the strategy of molding biological systems to fit into conceptual frameworks used in other disciplines, most notably the engineering sciences. Because biological systems have fundamental differences from systems in these other disciplines, this approach is challenging and the insights obtained from such analyses are often not framed in a biologically-intuitive way. Here, we present a new theoretical framework for analyzing the dynamics of genetic circuits that is tailored towards the unique properties associated with biological systems and experiments. Our framework approximates a complex circuit as a set of simpler circuits, which the system can transition between by saturating its various internal components. These approximations are connected to the intrinsic structure of the system, so this representation allows the analysis of dynamics which emerge solely from the system’s structure. Using our framework, we analyze the presence of structural bistability in a leaky autoactivation motif and the presence of structural oscillations in the Repressilator.


2020 ◽  
Vol 219 (11) ◽  
Author(s):  
Colin R. Gliech ◽  
Andrew J. Holland

Biological timekeeping enables the coordination and execution of complex cellular processes such as developmental programs, day/night organismal changes, intercellular signaling, and proliferative safeguards. While these systems are often considered separately owing to a wide variety of mechanisms, time frames, and outputs, all clocks are built by calibrating or delaying the rate of biochemical reactions and processes. In this review, we explore the common themes and core design principles of cellular clocks, giving special consideration to the challenges associated with building timers from biochemical components. We also outline how evolution has coopted time to increase the reliability of a diverse range of biological systems.


2017 ◽  
Vol 13 (4) ◽  
pp. 665-676 ◽  
Author(s):  
Cynthia Rangel-Chavez ◽  
Edgardo Galan-Vasquez ◽  
Agustino Martinez-Antonio

Consensus of the architecture and composition of the elements that form transcriptional units inE. coliand comparison with synthetic genetic circuits.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 504
Author(s):  
Xiaofan Feng ◽  
Mario Andrea Marchisio

Synthetic gene circuits are made of DNA sequences, referred to as transcription units, that communicate by exchanging proteins or RNA molecules. Proteins are, mostly, transcription factors that bind promoter sequences to modulate the expression of other molecules. Promoters are, therefore, key components in genetic circuits. In this review, we focus our attention on the construction of artificial promoters for the yeast S. cerevisiae, a popular chassis for gene circuits. We describe the initial techniques and achievements in promoter engineering that predated the start of the Synthetic Biology epoch of about 20 years. We present the main applications of synthetic promoters built via different methods and discuss the latest innovations in the wet-lab engineering of novel promoter sequences.


Author(s):  
Jamal O. Wilson ◽  
David Rosen

The duality between biological systems and engineering systems exists in the pursuit of economical and efficient solutions. By adapting biological design principles, nature’s technology can be harnessed. In this paper, we present a systematic method for reverse engineering biological systems to assist the designer in searching for solutions in nature to current engineering problems. Specifically, we present methods for decomposing the physical and functional biological architectures, representing dynamic functions, and abstracting biological design principles to guide conceptual design. We illustrate this method with an example of the design of a variable stiffness skin for a morphable airplane wing based on the mutable connective tissue of the sea cucumber.


2018 ◽  
Vol 5 (1) ◽  
pp. 453-476 ◽  
Author(s):  
Sebastien Lemire ◽  
Kevin M. Yehl ◽  
Timothy K. Lu

Bacteriophage research has been instrumental to advancing many fields of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been adapted for building gene circuits to program biological systems. Phages also exhibit significant medical potential as antibacterial agents and bacterial diagnostics due to their extreme specificity for their host, and our growing ability to engineer them further enhances this potential. Phages have also been used as scaffolds for genetically programmable biomaterials that have highly tunable properties. Furthermore, phages are central to powerful directed evolution platforms, which are being leveraged to enhance existing biological functions and even produce new ones. In this review, we discuss recent examples of how phage research is influencing these next-generation biotechnologies.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefano Vecchione ◽  
Georg Fritz

Abstract Background Synthetic biology heavily depends on rapid and simple techniques for DNA engineering, such as Ligase Cycling Reaction (LCR), Gibson assembly and Golden Gate assembly, all of which allow for fast, multi-fragment DNA assembly. A major enhancement of Golden Gate assembly is represented by the Modular Cloning (MoClo) system that allows for simple library propagation and combinatorial construction of genetic circuits from reusable parts. Yet, one limitation of the MoClo system is that all circuits are assembled in low- and medium copy plasmids, while a rapid route to chromosomal integration is lacking. To overcome this bottleneck, here we took advantage of the conditional-replication, integration, and modular (CRIM) plasmids, which can be integrated in single copies into the chromosome of Escherichia coli and related bacteria by site-specific recombination at different phage attachment (att) sites. Results By combining the modularity of the MoClo system with the CRIM plasmids features we created a set of 32 novel CRIMoClo plasmids and benchmarked their suitability for synthetic biology applications. Using CRIMoClo plasmids we assembled and integrated a given genetic circuit into four selected phage attachment sites. Analyzing the behavior of these circuits we found essentially identical expression levels, indicating orthogonality of the loci. Using CRIMoClo plasmids and four different reporter systems, we illustrated a framework that allows for a fast and reliable sequential integration at the four selected att sites. Taking advantage of four resistance cassettes the procedure did not require recombination events between each round of integration. Finally, we assembled and genomically integrated synthetic ECF σ factor/anti-σ switches with high efficiency, showing that the growth defects observed for circuits encoded on medium-copy plasmids were alleviated. Conclusions The CRIMoClo system enables the generation of genetic circuits from reusable, MoClo-compatible parts and their integration into 4 orthogonal att sites into the genome of E. coli. Utilizing four different resistance modules the CRIMoClo system allows for easy, fast, and reliable multiple integrations. Moreover, utilizing CRIMoClo plasmids and MoClo reusable parts, we efficiently integrated and alleviated the toxicity of plasmid-borne circuits. Finally, since CRIMoClo framework allows for high flexibility, it is possible to utilize plasmid-borne and chromosomally integrated circuits simultaneously. This increases our ability to permute multiple genetic modules and allows for an easier design of complex synthetic metabolic pathways in E. coli.


Sign in / Sign up

Export Citation Format

Share Document