Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites

Science ◽  
1995 ◽  
Vol 268 (5208) ◽  
pp. 297-300 ◽  
Author(s):  
N Spruston ◽  
Y Schiller ◽  
G Stuart ◽  
B Sakmann
1999 ◽  
Vol 81 (1) ◽  
pp. 408-411 ◽  
Author(s):  
Dax A. Hoffman ◽  
Daniel Johnston

Hoffman, Dax A. and Daniel Johnston. Neuromodulation of dendritic action potentials. J. Neurophysiol. 81: 408–411, 1999. The extent to which regenerative action potentials invade hippocampal CA1 pyramidal dendrites is dependent on both recent activity and distance from the soma. Previously, we have shown that the amplitude of back-propagating dendritic action potentials can be increased by activating either protein kinase A (PKA) or protein kinase C (PKC) and a subsequent depolarizing shift in the activation curve for dendritic K+ channels. Physiologically, an increase in intracellular PKA and PKC would be expected upon activation of β-adrenergic and muscarinic acetylcholine receptors, respectively. Accordingly, we report here that activation of either of these neurotransmitter systems results in an increase in dendritic action-potential amplitude. Activation of the dopaminergic neurotransmitter system, which is also expected to raise intracellular adenosine 3′,5′-cyclic monophosphate (cAMP) and PKA levels, increased action-potential amplitude in only a subpopulation of neurons tested.


2002 ◽  
Vol 87 (2) ◽  
pp. 1169-1174 ◽  
Author(s):  
Yoshikazu Isomura ◽  
Yoko Fujiwara-Tsukamoto ◽  
Michiko Imanishi ◽  
Atsushi Nambu ◽  
Masahiko Takada

Low concentration of Ni2+, a T- and R-type voltage-dependent calcium channel (VDCC) blocker, is known to inhibit the induction of long-term potentiation (LTP) in the hippocampal CA1 pyramidal cells. These VDCCs are distributed more abundantly at the distal area of the apical dendrite than at the proximal dendritic area or soma. Therefore we investigated the relationship between the Ni2+-sensitivity of LTP induction and the synaptic location along the apical dendrite. Field potential recordings revealed that 25 μM Ni2+ hardly influenced LTP at the proximal dendritic area (50 μm distant from the somata). In contrast, the same concentration of Ni2+ inhibited the LTP induction mildly at the middle dendritic area (150 μm) and strongly at the distal dendritic area (250 μm). Ni2+ did not significantly affect either the synaptic transmission at the distal dendrite or the burst-firing ability at the soma. However, synaptically evoked population spikes recorded near the somata were slightly reduced by Ni2+ application, probably owing to occlusion of dendritic excitatory postsynaptic potential (EPSP) amplification. Even when the stimulating intensity was strengthened sufficiently to overcome such a reduction in spike generation during LTP induction, the magnitude of distal LTP was not significantly recovered from the Ni2+-dependent inhibition. These results suggest that Ni2+ may inhibit the induction of distal LTP directly by blocking calcium influx through T- and/or R-type VDCCs. The differentially distributed calcium channels may play a critical role in the induction of LTP at dendritic synapses of the hippocampal pyramidal cells.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael A Gaviño ◽  
Kevin J Ford ◽  
Santiago Archila ◽  
Graeme W Davis

Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release.


1994 ◽  
Vol 1 (4) ◽  
pp. 243-257
Author(s):  
G A Clark ◽  
R D Hawkins ◽  
E R Kandel

A hallmark of many forms of classical conditioning is a precise temporal specificity: Learning is optimal when the conditioned stimulus (CS) slightly precedes the unconditioned stimulus (US), but the learning is degraded at longer or backward intervals, consistent with the notion that conditioning involves learning about predictive relationships in the environment. To further examine the cellular mechanisms contributing to the temporal specificity of classical conditioning of the siphon-withdrawal response in Aplysia, we paired action potential activity in siphon sensory neurons (the neural CS) with tail nerve shock (the US) at three critical time points. We found that CS-US pairings at short (0.5 sec) forward intervals produced greater synaptic facilitation at sensorimotor connections than did either 0.5-sec backward pairings or longer (5 sec) forward pairings, as reflected in a differential increase in both the amplitude and rate of rise of the synaptic potential. In the same preparations, forward pairings also differentially reduced the sensory neuron afterhyperpolarization relative to backward pairings, suggesting that changes in synaptic efficacy were accompanied by temporally specific changes in ionic currents in the sensory neurons. Additional experiments demonstrated that short forward pairings of sensory cell activity and restricted applications of the neuromodulatory transmitter serotonin (normally released by the US) differentially enhanced action potential broadening in siphon sensory neurons, relative to backward pairings. Taken together, these results suggest that temporally specific synaptic enhancement engages both spike-width-dependent and spike-width-independent facilitatory processes and that activity-dependent enhancement of presynaptic facilitation may contribute to both the CS-US sequence and proximity requirements of conditioning.


2018 ◽  
Vol 24 (5) ◽  
pp. 471-485 ◽  
Author(s):  
Jillian Belgrad ◽  
R. Douglas Fields

The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Yuichi Toyama ◽  
Manabu Yonekura ◽  
Chong Han ◽  
Hirofumi Tomita ◽  
Hiroshi Takeshima ◽  
...  

Trimeric intracellular cation (TRIC) channels are expressed on the surface of sarcoplasmic reticulum (SR) and regulate calcium release from ryanodine receptors (RyRs). In a previous study, Tric-a knock out (KO) mice showed diminished calcium release from RyRs following increased calcium-influx via L-type calcium channels, which results in enhanced vascular resistance and non-dipper type hypertension. Decreased activation of RyR1 by PKA in skeletal myocytes in Tric-a KO mice is also known. However, physiological importance of TRIC channels on cardiac rhythm formation and its importance on the sympathetic nerve regulation are still obscure. Therefore, we aimed to clarify the effects of Tric-a ablation on cardiac pace making using Tric-a KO mice. We measured systolic blood pressure (SBP) with tail-cuff method, ECG and spontaneous action potential with microelectrode in the Tric-a KO and wild type (WT) mice. Isoproterenol or propranolol was used for sympathetic nerve manipulation. Furthermore, we evaluated heart rate variability (HRV). Tric-a KO mice tended to show limited responses to isoproterenol (0.3 mg/kg) than the WT mice (-27 ± 6 and -32 ± 6 mmHg, n = 10, p =0.70), and to propranolol (4 ± 6 and 13 ± 7 mmHg, n = 5~6, p =0.48). In ECG analysis, ablation of Tric-a gene resulted in significantly decreased heart rate changes to isoproterenol (23 ± 6 and 99 ± 15 bpm, Tric-a KO and WT mice, respectively, n = 9~10, p <0.001). Response to propranolol was also significantly decreased in the Tric-a KO mice (-28 ± 20 and -122 ± 14 bpm, Tric-a KO and WT mice, respectively, n = 9~10, p <0.001). In the action potential recordings, Tric-a KO mice showed significantly decreased sinus rate changes to 1 microM isoproterenol (35 ± 9 and 71 ± 10 bpm, Tric-a KO and WT mice, respectively, n = 6~8, p <0.05). In HRV analysis, low-frequency/high-frequency (LF/HF) ratio tended to be lower in the Tric-a KO mice than the WT mice under the administration of isoproterenol (0.22 ± 0.31 and 0.65 ± 0.16 bpm, Tric-a KO and WT mice, respectively, n = 9~11, p =0.16), suggesting lower sympathetic nerve tonus in the Tric-a KO mice. In conclusion, our data indicates that Tric-a KO mice showed attenuated responses to beta-adrenergic stimulus, which indicates involvement of TRIC-A channels in sympathetic nerve regulation.


1999 ◽  
Vol 82 (6) ◽  
pp. 2936-2946 ◽  
Author(s):  
Mario B. Lips ◽  
Bernhard U. Keller

A quantitative analysis of activity-related calcium dynamics was performed in motoneurons of the nucleus hypoglossus in the brain stem slice preparation from mouse by simultaneous patch-clamp and microfluorometric calcium measurements. Motoneurons were analyzed under in vitro conditions that kept them in a functionally intact state represented by rhythmic, inspiratory-related bursts of excitatory postsynaptic currents and associated action potential discharges. Bursts of electrical activity were paralleled by somatic calcium transients resulting from calcium influx through voltage-activated calcium channels, where each action potential accounted for a calcium-mediated charge influx around 2 pC into the somatic compartment. Under in vivo conditions, rhythmic-respiratory activity in young mice occurred at frequencies up to 5 Hz, demonstrating the necessity for rapid calcium elevation and recovery in respiratory-related neurons. The quantitative analysis of hypoglossal calcium homeostasis identified an average extrusion rate, but an exceptionally low endogenous calcium binding capacity as cellular parameters accounting for rapid calcium signaling. Our results suggest that dynamics of somatic calcium transients 1) define an upper limit for the maximum frequency of respiratory-related burst discharges and 2) represent a potentially dangerous determinant of intracellular calcium profiles during pathophysiological and/or excitotoxic conditions.


2004 ◽  
Vol 91 (2) ◽  
pp. 1025-1035 ◽  
Author(s):  
Chuan-Li Zhang ◽  
Yakov Verbny ◽  
Sameh A. Malek ◽  
Peter K. Stys ◽  
Shing Yan Chiu

Receptor-mediated calcium signaling in axons of mouse and rat optic nerves was examined by selectively staining the axonal population with a calcium indicator. Nicotine (1-50 μM) induced an axonal calcium elevation that was eliminated when calcium was removed from the bath, suggesting that nicotine induces calcium influx into axons. The nicotine response was blocked by d-tubocurarine and mecamylamine but not α-bungarotoxin, indicating the presence of calcium permeable, non-α7 nicotinic acetylcholine receptor (nAChR) subtype. Agonist efficacy order for eliciting the axonal nAChR calcium response was cytisine ∼ nicotine >> acetylcholine. The nicotine-mediated calcium response was attenuated during the process of normal myelination, decreasing by approximately 10-fold from P1 (premyelinated) to P30 (myelinated). Nicotine also caused a rapid reduction in the compound action potential in neonatal optic nerves, consistent with a shunting of the membrane after opening of the nonspecific cationic nicotinic channels. Voltagegated calcium channels contributed little to the axonal calcium elevation during nAChR activation. During repetitive stimulations, the compound action potential in neonatal mouse optic nerves underwent a gradual reduction in amplitude that could be partially prevented by d-tubocurarine, suggesting an activity-dependent release of acetylcholine that activates axonal AChRs. We conclude that mammalian optic nerve axons express nAChRs and suggest that these receptors are activated in an activity-dependent fashion during optic nerve development to modulate axon excitability and biology.


1993 ◽  
Vol 69 (6) ◽  
pp. 2150-2163 ◽  
Author(s):  
F. Viana ◽  
D. A. Bayliss ◽  
A. J. Berger

1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The early one was of short duration and is termed the fAHP; the later AHP was of longer duration and is termed the mAHP. The amplitudes of both AHPs were enhanced by membrane potential depolarization (further from EK). In addition, their amplitudes were reduced by high extracellular K+ concentration, suggesting that activation of potassium conductances underlies both phases of the AHP. 3. Prolongation of the action potential and blockade of the fAHP were observed after application of 1) tetraethylammonium (TEA) (1-10 mM) and 2) 4-aminopyridine (4-AP) (0.1-0.5 mM). Calcium channel blockers had little or no effect on the fAHP or action potential duration. 4. The size of the mAHP was diminished by 1) manganese, 2) lowering external Ca2+, 3) apamin, and 4) intracellular injection of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) suggesting that influx of calcium activates the potassium conductance that underlies the mAHP. 5. The mAHP was unaffected by nifedipine (20 microM), but was strongly reduced by focal application of omega-conotoxin GVIA, suggesting that N-type calcium channels represent the major calcium influx pathway for activation of the calcium-dependent K+ conductance underlying the mAHP. 6. Repetitive firing properties were investigated by injecting long-duration depolarizing current pulses. Steady-state firing rose linearly with injected current amplitude. The slope of the firing frequency-current (f-I) relationship averaged approximately 30 Hz/nA in control conditions. Blockade of the conductance underlying the mAHP caused a marked increase in the minimal repetitive firing frequency and in the slope of the f-I plot, indicating a prominent role for the conductance underlying the mAHP in controlling repetitive firing behavior. 7. We conclude that action potential repolarization and AHPs are due to activation of pharmacologically distinct potassium conductances. Whereas repolarization of the action potential and the fAHP involves primarily a voltage-dependent, calcium-independent potassium conductance that is TEA- and 4-AP-sensitive, the mAHP requires the influx of extracellular calcium and is apamin sensitive. Activation of the calcium-activated potassium conductance greatly influences the normal repetitive firing of neonatal hypoglossal motoneurons.


Sign in / Sign up

Export Citation Format

Share Document