scholarly journals Epigenome Interactions with Patterned Neuronal Activity

2018 ◽  
Vol 24 (5) ◽  
pp. 471-485 ◽  
Author(s):  
Jillian Belgrad ◽  
R. Douglas Fields

The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.

2020 ◽  
pp. 107385842094351
Author(s):  
Philip R. Lee ◽  
R. Douglas Fields

The function of the nervous system in conveying and processing information necessary to interact with the environment confers unique aspects on how the expression of genes in neurons is regulated. Three salient factors are that (1) neurons are the largest and among the most morphologically complex of all cells, with strict polarity, subcellular compartmentation, and long-distant transport of gene products, signaling molecules, and other materials; (2) information is coded in the temporal firing pattern of membrane depolarization; and (3) neurons must maintain a stable homeostatic level of activation to function so stimuli do not normally drive intracellular signaling to steady state. Each of these factors can require special methods of analysis differing from approaches used in non-neuronal cells. This review considers these three aspects of neuronal gene expression and the current approaches being used to analyze these special features of how the neuronal transcriptome is modulated by action potential firing.


2021 ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2017 ◽  
Author(s):  
Brendon O. Watson ◽  
Mingxin Ding ◽  
György Buzsáki

AbstractThe local field potential (LFP) is an aggregate measure of group neuronal activity and is often correlated with the action potentials of single neurons. In recent years investigators have found that action potential firing rates increase during elevations in power high-frequency band oscillations (50-200 Hz range). However action potentials also contribute to the LFP signal itself, making the spike–LFP relationship complex. Here we examine the relationship between spike rates and LFPs in varying frequency bands in rat neocortical recordings. We find that 50-180Hz oscillations correlate most consistently with high firing rates, but that other LFPs bands also carry information relating to spiking, including in some cases anti-correlations. Relatedly, we find that spiking itself and electromyographic activity contribute to LFP power in these bands. The relationship between spike rates and LFP power varies between brain states and between individual cells. Finally, we create an improved oscillation-based predictor of action potential activity by specifically utilizing information from across the entire recorded frequency spectrum of LFP. The findings illustrate both caveats and improvements to be taken into account in attempts to infer spiking activity from LFP.


2021 ◽  
Vol 41 (7) ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

Abstract The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes (BPs) such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In the present study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype (WT) HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple BPs with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2263-2263
Author(s):  
Nadia Felli ◽  
Elvira Pelosi ◽  
Rosanna Botta ◽  
Laura Fontana ◽  
Valentina Lulli ◽  
...  

Abstract MicroRNAs (miRs) are a class of a small (~ 22nt) RNAs, which play an important role in the negative regulation of gene expression by base-pairing to complementary sites on the target mRNAs. While it is established that miRs are involved in a variety of basic processes, e.g., cell proliferation and apoptosis, neural development, fat metabolism and stress response, little is known on their expression and function in hematopoiesis. In order to investigate miR expression in erythropoietic (E), megakaryocytic (Mk), granulopoietic (G) and monocytopoietic (Mo) lineages, we have assayed their level at discrete sequential stages of the E, Mk, G or Mo series in unilineage differentiation/maturation cultures of cord blood (CB) CD34+ cells. The analysis was performed using a microarray chip containing as probes gene-specific 40mer oligonucleotides, generated from 161 human and 84 mouse precursors miRs (Liu GC et al., PNAS, 2004). Northern blot analysis confirmed the microarray data. The results indicate that the majority of the analyzed miRs is not expressed in CB hematopoietic cells. However, 49 miRs are expressed at significant levels in CD34+ cells: in most cases the expression level declines during hematopoietic differentiation according to diverse patterns, i.e., the decline may be more or less pronounced, more or less rapid and differ in the diverse hematopoietic lineages. As expression pattern examples, we observed that: (a) miR 223 is strongly downmodulated in the E lineage, whereas its level is not affected or increased in the other series; (b) miR 221 and 222 level sharply declines in the E lineage, while the drop is less pronounced in the Mk, G and Mo series; conversely, (c) miR 17, 20, 106 are downmodulated prevalentely in the G/Mo series, as compared to the E/Mk lineages. Interestingly, cluster analysis indicates that miR expression in hematopoietic cells is sharply different from that observed in CB T lymphocytes. The lineage- and stage-specific pattern of miR expression is of functional relevance. As an example, transfection of miR 222 oligonucleotide into CD34+ cells grown in multilineage clonogenic culture causes a pronounced shift from E to GM colony formation, indicating modulation of the lineage commitment of hematopoietic progenitors. The target genes of miRs expressed in hematopoietic cells are often of pivotal functional significance, e.g., miR 222 targets the kit receptor (N. Felli et al., this Meeting). A single miR may target diverse mRNAs, e.g., miR 222 targets kit, Ets1 and Fli1. Conversely, a single mRNA may be targeted by different miRs, e.g.,, kit is targeted by miR 146, 221 and 222. Noterworthily, the miR expression pattern in primitive hematopoietic cells and their progeny is fully distinct from that observed in primitive mesenchymal and neural cells (i.e., “neurospheres”) and their progeny: this suggests that miR downmodulation during differentiation of primitive cells contributes to tissue-specific gene expression by unblocking translational repression of the target mRNAs.


2014 ◽  
Vol 112 (12) ◽  
pp. 3077-3085 ◽  
Author(s):  
Michael Uebner ◽  
Richard W. Carr ◽  
Karl Messlinger ◽  
Roberto De Col

Activity-dependent processes in slowly conducting afferents have been shown to modulate conduction and receptive properties, but it is not known how the frequency of action potential firing determines the responses of such fibers to mechanical stimulation. We examined the responses of slowly conducting meningeal afferents to mechanical stimuli and the influence of preceding action potential activity. In hemisected rat heads with adhering cranial dura mater, recordings were made from meningeal nerves. Dural receptive fields of mechanically sensitive afferent fibers were stimulated with a custom-made electromechanostimulator. Sinusoidal mechanical stimuli of different stimulus durations and amplitudes were applied to produce either high-frequency (phasic) or low-frequency (tonic) discharges. Most fibers showed slowing of their axonal conduction velocity on electrically evoked activity at ≥2 Hz. In this state, the peak firing frequency of phasic responses to a 250-ms mechanical stimulus was significantly reduced compared with control. In contrast, the frequency of tonic responses induced by mechanical stimuli of >500 ms did not change. In a rare subtype of afferents, which showed conduction velocity speeding during activity, an increase in the phasic responses to mechanical stimuli was observed. Depending on the axonal properties of the afferent fibers, encoding of phasic components of mechanical stimuli is altered according to the immediate firing history. Preceding activity in mechanoreceptors slowing their conduction velocity seems to provide a form of low-pass filtering of action potential discharges predominantly reducing the phasic component. This may improve discrimination between harmless and potentially harmful mechanical stimuli in normal tissue.


2019 ◽  
Vol 20 (9) ◽  
pp. 2279 ◽  
Author(s):  
Gerardo Botti ◽  
Giosuè Scognamiglio ◽  
Gabriella Aquino ◽  
Giuseppina Liguori ◽  
Monica Cantile

lncRNAs participate in many cellular processes, including regulation of gene expression at the transcriptional and post-transcriptional levels. In addition, many lncRNAs can contribute to the development of different human diseases including cancer. The tumor microenvironment (TME) plays an important role during tumor growth and metastatic progression, and most of these lncRNAs have a key function in TME intracellular signaling. Among the numerous identified lncRNAs, several experimental evidences have shown the fundamental role of the lncRNA HOTAIR in carcinogenesis, also highlighting its use as a circulating biomarker. In this review we described the contribution of HOTAIR in the TME modulation, highlighting its relation with cellular and non-cellular components during tumor evolution and progression.


2021 ◽  
Author(s):  
Samir Rahman ◽  
Pengfei Dong ◽  
Pasha Apontes ◽  
Michael B. Fernando ◽  
Kayla G. Townsley ◽  
...  

The 3D genome plays a key role in the regulation of gene expression. However, little is known about the spatiotemporal organization of chromatin during human brain development. We investigated the 3D genome in human fetal cortical plate and in adult prefrontal cortical neurons and glia. We found that neurons have weaker compartments than glia that emerge during fetal development. Furthermore, neurons form loop domains whereas glia form compartment domains. We show through CRISPRi on CNTNAP2 that transcription is coupled to loop domain insulation. Gene regulation during neural development involves increased use of enhancer-promoter and repressor-promoter loops. Finally, transcription is associated with gene loops. Altogether, we provide novel insights into the relationship between gene expression and different scales of chromatin organization in the human brain.


Sign in / Sign up

Export Citation Format

Share Document