scholarly journals Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth

Science ◽  
2019 ◽  
Vol 363 (6434) ◽  
pp. 1456-1459 ◽  
Author(s):  
M. Papanatsiou ◽  
J. Petersen ◽  
L. Henderson ◽  
Y. Wang ◽  
J. M. Christie ◽  
...  

Stomata serve dual and often conflicting roles, facilitating carbon dioxide influx into the plant leaf for photosynthesis and restricting water efflux via transpiration. Strategies for reducing transpiration without incurring a cost for photosynthesis must circumvent this inherent coupling of carbon dioxide and water vapor diffusion. We expressed the synthetic, light-gated K+ channel BLINK1 in guard cells surrounding stomatal pores in Arabidopsis to enhance the solute fluxes that drive stomatal aperture. BLINK1 introduced a K+ conductance and accelerated both stomatal opening under light exposure and closing after irradiation. Integrated over the growth period, BLINK1 drove a 2.2-fold increase in biomass in fluctuating light without cost in water use by the plant. Thus, we demonstrate the potential of enhancing stomatal kinetics to improve water use efficiency without penalty in carbon fixation.

2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


2003 ◽  
Vol 95 (4) ◽  
pp. 1071-1081 ◽  
Author(s):  
L. H. Allen ◽  
Deyun Pan ◽  
K. J. Boote ◽  
N. B. Pickering ◽  
J. W. Jones

1991 ◽  
Vol 21 (2) ◽  
pp. 207-216 ◽  
Author(s):  
P. M. Miller ◽  
L. E. Eddleman ◽  
J. M. Miller

Plants are balanced systems that integrate processes of carbon fixation and uptake of water and nutrients to optimize resource acquisition. Response of Juniperusoccidentalis Hook. to reductions in above- and below-ground tissue was measured to determine effects on carbon dioxide assimilation, leaf conductance, intercellular carbon dioxide, xylem water potential, foliage nutrient concentration, aboveground growth, water-use efficiency, and potential photosynthetic nitrogen-use efficiencies. Approximately 50% of the old foliage was removed and lateral roots were severed at the canopy edge in early April 1988; physiological processes were measured during three periods in the summer of 1988. Foliage removal increased rates of carbon dioxide assimilation and photosynthetic nitrogen-use efficiency, but neither increased growth nor improved water status or nitrogen concentration of remaining foliage. Cutting lateral roots reduced assimilation, leaf conductance, foliage nitrogen concentration, branchlet elongation, water-use efficiency, and photosynthetic nitrogen-use efficiency. By late August, juvenile and small-adult J. occidentalis in the cut-top treatment had compensated for foliage removal by reestablishing patterns of water-use efficiencies similar to those of control plants, which may indicate that an overall metabolic control was functioning to regulate the balance between carbon dioxide assimilation and water loss. Cutting lateral roots had a more lasting effect on efficiencies; by late August, juveniles and small adults still had significantly lower water-use efficiencies than controls.


2019 ◽  
Vol 16 (13) ◽  
pp. 2557-2572 ◽  
Author(s):  
Sven Boese ◽  
Martin Jung ◽  
Nuno Carvalhais ◽  
Adriaan J. Teuling ◽  
Markus Reichstein

Abstract. Water-use efficiency (WUE), defined as the ratio of carbon assimilation over evapotranspiration (ET), is a key metric to assess ecosystem functioning in response to environmental conditions. It remains unclear which factors control this ratio during periods of extended water limitation. Here, we used dry-down events occurring at eddy-covariance flux tower sites in the FLUXNET database as natural experiments to assess if and how decreasing soil-water availability modifies WUE at ecosystem scale. WUE models were evaluated by their performance to predict ET from both the gross primary productivity (GPP), which characterizes carbon assimilation at ecosystem scale, and environmental variables. We first compared two water-use efficiency models: the first was based on the concept of a constant underlying water-use efficiency, and the second augmented the first with a previously detected direct influence of radiation on transpiration. Both models predicting ET strictly from atmospheric covariates failed to reproduce observed ET dynamics for these periods, as they did not explicitly account for the effect of soil-water limitation. We demonstrate that an ET-attenuating soil-water-availability factor in junction with the additional radiation term was necessary to accurately predict ET flux magnitudes and dry-down lengths of these water-limited periods. In an analysis of the attenuation of ET for the 31 included FLUXNET sites, up to 50 % of the observed decline in ET was due to the soil-water-availability effect we identified in this study. We conclude by noting that the rates of ET decline differ significantly between sites with different vegetation and climate types and discuss the dependency of this rate on the variability of seasonal dryness.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1194 ◽  
Author(s):  
Richard Beeson ◽  
Jianjun Chen

Irrigating plants based on their water requirements enhances water use efficiency and conservation; however, current irrigation practices for container-grown greenhouse plants largely relies on growers’ experiences, resulting in leaching and/or runoff of a large amount of water. To address water requirements of greenhouse-grown plants, this study adapted a canopy closure model and investigated actual evapotranspiration (ETA) of Calathea G. Mey. ‘Silhouette’ and Stromanthe sanguinea Sond. from transplanting to marketable sizes in a shaded greenhouse. The daily ETA per Calathea plant ranged from 3.55 mL to 59.39 mL with a mean cumulative ETA of 4.84 L during a 224 day growth period. The daily ETA of S. sanguinea varied from 7.87 mL to 97.27 mL per plant with a mean cumulative ETA of 6.81 L over a 231 day production period. The best fit models for predicting daily ETA of Calathea and Stromanthe were developed, which had correlation coefficients (r2) of 0.82 and 0.73, respectively. The success in modelling ETA of the two species suggested that the canopy closure model was suitable for quantifying water use of container-grown greenhouse plants. Applying the research-based ETA information in production could reduce water use and improve irrigation efficiency during Calathea and Stromanthe production.


Sign in / Sign up

Export Citation Format

Share Document