High strength in combination with high toughness in robust and sustainable polymeric materials

Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. 1376-1379 ◽  
Author(s):  
Xiaojian Liao ◽  
Martin Dulle ◽  
Juliana Martins de Souza e Silva ◽  
Ralf B. Wehrspohn ◽  
Seema Agarwal ◽  
...  

In materials science, there is an intrinsic conflict between high strength and high toughness, which can be resolved for different materials only through the use of innovative design principles. Advanced materials must be highly resistant to both deformation and fracture. We overcome this conflict in man-made polymer fibers and show multifibrillar polyacrylonitrile yarn with a toughness of 137 ± 21 joules per gram in combination with a tensile strength of 1236 ± 40 megapascals. The nearly perfect uniaxial orientation of the fibrils, annealing under tension in the presence of linking molecules, is essential for the yarn’s notable mechanical properties. This underlying principle can be used to create similar strong and tough fibers from other commodity polymers in the future and can be used in a variety of applications in areas such as biomedicine, satellite technology, textiles, aircrafts, and automobiles.

Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


Alloy Digest ◽  
2012 ◽  
Vol 61 (3) ◽  

Abstract Dillimax 500 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 500 MPa (72 ksi). Plate is delivered in three qualities: basic, high toughness, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, heat treating, and joining. Filing Code: SA-645. Producer or source: Dillinger Hütte GTS.


Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract SPARTAN II (HSLA-100) is one of the family of Spartan high strength (>690 MPa, or >100 ksi, minimum yield strength), high toughness, improved weldability steels, which are alternatives to traditional quenched and tempered alloy steels. The Spartan family of steels are low carbon, copper precipitation hardened steels. Spartan II has improved yield strength compared to Spartan I. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on forming and joining. Filing Code: SA-738. Producer or source: ArcelorMittal USA.


Alloy Digest ◽  
2007 ◽  
Vol 56 (9) ◽  

Abstract The carbon content in TLS S1, about 0.5%, produces a combination of high strength and high toughness with medium wear resistance. Chisels and rivet sets are typical applications. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating and machining. Filing Code: TS-655. Producer or source: Timken Latrobe Steel.


Author(s):  
Lulu Shen ◽  
Yushun Zhao ◽  
Peter Samora Owuor ◽  
Chao Wang ◽  
Chao Sui ◽  
...  

2009 ◽  
Vol 618-619 ◽  
pp. 97-100
Author(s):  
Yong Qing Zhao ◽  
Heng Lei Qu ◽  
Jun Chen

The recent shift in the design focus for aeroplanes from strength to damage tolerance has led to a subsequent shift in the focus of Ti alloy research. China first started to research Ti alloys with damage tolerance from the year 2000. The first product stemming from this research is a Ti alloy with high strength, high toughness and damage tolerance (TC21). TC21 exhibits high strength (UTS  1100MPa), high fracture toughness (K1c  70MPa.m1/2) and a low crack propagation rate (da/dN being similar to Ti-6-4 with  annealing). Another Ti alloy, named TC4-DT, has also been produced. It has moderate strength, along with high toughness and damage tolerance (UTS  900MPa, K1c  70MPa.m1/2, da/dN being similar to Ti-6-4 with  annealing). Both TC21 and TC4-DT are now undergoing rapid development, with the former alloy also being applied to a full scale aeronautical application. Both TC21 and TC4-DT have promising futures in the industry. They will be the main Ti alloys with damage tolerance utilised in the Chinese market.


MRS Bulletin ◽  
1986 ◽  
Vol 11 (4) ◽  
pp. 27-27 ◽  
Author(s):  
John J. Gilman

The boundaries between the present performance of materials and the requirements of device designers have for centuries been moving forward. The steps taken to draw these two together are sometimes large; more often they are small. As they occur, we find materials that are stronger, have larger magnetic moments, have higher electron mobilities, etc. Each time the property profile improves, understanding of the physical and chemical properties advances, and new engineering devices based on the improved profile are invented and developed.The purpose of the Center for Advanced Materials (CAM) at the Lawrence Berkeley Laboratory (LBL) is to enhance the inter-play between advances in the property profiles of materials and advances in the chemical and physical understanding of them. For this purpose, the location of CAM can be described as ideal. The proximity of this national laboratory to the campus of the University of California at Berkeley provides an unusually rich intellectual setting for the Center. It also provides unique opportunities for the University students and faculty who conduct materials-related research. Indeed, the arrangement should be a model for similar organizations, and it represents a solid method for strengthening materials science and technology throughout the nation.National policy in critical materials has given the national laboratories—including LBL—strong direction and incentive to collaborate with industry and the research universities. This incentive led to the establishment of CAM in order to build on the symbiosis between LBL and the University of California at Berkeley. It strives to extend this symbiosis by bringing industry into the ongoing educational process and by making its special facilities more readily available to industrial researchers.


2013 ◽  
Vol 690-693 ◽  
pp. 106-109 ◽  
Author(s):  
Xiang Dong Huo ◽  
Lin Guo ◽  
Jin Song Feng ◽  
Chao Luo ◽  
Jun Qu

A new hot-rolled ship plate with high strength and high toughness is successfully developed through chemical composition design and TMCP process. Experimental methods, such as OM, TEM and X-EDS, were used to study the microstructure and precipitates of steel. The primary microstructural constituent is acicular ferrite, quasi-polygonal ferrite with second constituents along grain boundaries. Lath width of acicular ferrite is about 1μm. Cubic particles about several hundreds nanometers and nanometer particles exist in experimental steel. It can be concluded that acicular ferrite is the main reason for high strength and super toughness. precipitation hardening due to dispersed precipitations of carbonitrides can not be overlooked.


Kobunshi ◽  
1985 ◽  
Vol 34 (11) ◽  
pp. 922-925
Author(s):  
Masatoshi Iguchi

Sign in / Sign up

Export Citation Format

Share Document